All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Зависимость работы организации от ее организационной структуры в ходе неожиданных и тлеющих кризисов
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 685-706В работе описана математическая модель функционирования организации с иерархической структурой управления на ранней стадии кризиса. Особенность развития этой стадии кризиса заключается в наличии так называемых сигналов раннего предупреждения, которые несут информацию о приближении нежелательного явления. Сотрудники организации способны улавливать эти сигналы и на их основе подготавливать ее к наступлению кризиса. Эффективность такой подготовки зависит как от параметров организации, так и от параметров кризисного явления. Предлагаемая в статье имитационная агентная модель реализована на языке программирования Java. Эта модель используется по методу Монте-Карло для сравнения децентрализованных и централизованных организационных структур, функционирующих в ходе неожиданных и тлеющих кризисов. Централизованными мы называем структуры с большим количеством уровней иерархии и малым количеством подчиненных у каждого руководителя, а децентрализованными — структуры с малым количеством уровней иерархии и большим количеством подчиненных у каждого руководителя. Под неожиданным кризисом понимается кризис со скоротечной ранней стадией и малым количеством слабых сигналов, а под тлеющим кризисом — кризис с длительной ранней стадией и большим количеством сигналов, не всегда несущих важную информацию. Эффективность функционирования организации на ранней стадии кризиса измеряется по двум параметрам: проценту сигналов раннего предупреждения, по которым были приняты решения для подготовки организации, и доле времени, отведенного руководителем организации на работу с сигналами. По результатам моделирования выявлено, что централизованные организации обрабатывают больше сигналов раннего предупреждения при тлеющих кризисах, а децентрализованные — при неожиданных кризисах. С другой стороны, занятость руководителя организации в ходе неожиданных кризисов выше для децентрализованных организаций, а в ходе тлеющих кризисов — для централизованных. В итоге, ни один из двух классов организаций не является более эффективным в ходе изученных типов кризисов сразу по обоим параметрам. Полученные в работе результаты проверены на устойчивость по параметрам, описывающим организацию и сотрудников.
Ключевые слова: кризис, антикризисное управление, слабые сигналы, математическое моделирование, имитационное моделирование, агентное моделирование, организационные структуры, метод Монте-Карло.
Relation between performance of organization and its structure during sudden and smoldering crises
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 685-706Views (last year): 2. Citations: 2 (RSCI).The article describes a mathematical model that simulates performance of a hierarchical organization during an early stage of a crisis. A distinguished feature of this stage of crisis is presence of so called early warning signals containing information on the approaching event. Employees are capable of catching the early warnings and of preparing the organization for the crisis based on the signals’ meaning. The efficiency of the preparation depends on both parameters of the organization and parameters of the crisis. The proposed simulation agentbased model is implemented on Java programming language and is used for conducting experiments via Monte- Carlo method. The goal of the experiments is to compare how centralized and decentralized organizational structures perform during sudden and smoldering crises. By centralized organizations we assume structures with high number of hierarchy levels and low number of direct reports of every manager, while decentralized organizations mean structures with low number of hierarchy levels and high number of direct reports of every manager. Sudden crises are distinguished by short early stage and low number of warning signals, while smoldering crises are defined as crises with long lasting early stage and high number of warning signals not necessary containing important information. Efficiency of the organizational performance during early stage of a crisis is measured by two parameters: percentage of early warnings which have been acted upon in order to prepare organization for the crisis, and time spent by top-manager on working with early warnings. As a result, we show that during early stage of smoldering crises centralized organizations process signals more efficiently than decentralized organizations, while decentralized organizations handle early warning signals more efficiently during early stage of sudden crises. However, occupation of top-managers during sudden crises is higher in decentralized organizations and it is higher in centralized organizations during smoldering crises. Thus, neither of the two classes of organizational structures is more efficient by the two parameters simultaneously. Finally, we conduct sensitivity analysis to verify the obtained results.
-
Анализ стратегий противников при игре в модифицированный «Морской бой»
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 817-827Врабо те рассматривается известная игра «Морской бой». Цель статьи — предложить модифицированную версию «Морского боя» и найти оптимальные стратегии действий игроков в новых правилах. Изменения коснулись как применяемых атакующих стратегий (добавлена новая возможность атаки, охватывающая четыре клетки за один выстрел), размера поля (использовались варианты игры для полей 10 × 10, 20 × 20, 30 × 30), так и правил расстановки кораблей в процессе боя (добавлена возможность перемещения корабля из зоны обстрела). Игра решалась с применением аппарата теории игр: составлены платежные матрицы для каждого варианта изменяемых правил, для них найдены оптимальные смешанные и чистые стратегии. При решении платежных матриц использовался итерационный метод. Симуляция состояла в применении пяти алгоритмов атаки и шести алгоритмов защиты с вариацией параметров при игре «каждого с каждым». Атакующие алгоритмы варьировались в разрезе 100 различных наборов значений, алгоритмы защиты — в разрезе 150 каждый. Важным результатом стало то, что в рамках этих ал- горитмов модифицированный «Морской бой» может быть решен, — то есть могут быть найдены устойчивые чистые или смешанные стратегии поведения, обеспечивающие сторонам оптимальный исход с точки зрения теории игр. Помимо этого, сделана оценка влияния изменений правил стандартного «Морского боя» на результат противостояния. Приведено сравнение с результатами, полученными авторами в предыдущей работе по данной тематике. На основе сопоставления полученных платежных матриц со статистическим анализом, проведенным ранее, отмечено, что стандартный «Морской бой» может быть представлен как частный случай рассмотренных в данной работе модификаций. Задача актуальна как с точки зрения ее применения в военном деле, так и в гражданских областях. Использование результатов статьи способно сохранить ресурсы при геологоразведке, обеспечить преимущество в военном противостоянии, сохранить детали, подвергающиеся разрушительному воздействию, и так далее.
Ключевые слова: морской бой, алгоритмы расстановки кораблей, алгоритмы атаки, теория игр, модификации морского боя, метод Монте-Карло.
The analysis of player’s behaviour in modified “Sea battle” game
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 817-827Views (last year): 18.The well-known “Sea battle” game is in the focus of the current job. The main goal of the article is to provide modified version of “Sea battle” game and to find optimal players’ strategies in the new rules. Changes were applied to attacking strategies (new option to attack hitting four cells in one shot was added) as well as to the size of the field (sizes of 10 × 10, 20 × 20, 30 × 30 were used) and to the rules of disposal algorithms during the game (new possibility to move the ship off the attacking zone). The game was solved with the use of game theory capabilities: payoff matrices were found for each version of altered rules, for which optimal pure and mixed strategies were discovered. For solving payoff matrices iterative method was used. The simulation was in applying five attacking algorithms and six disposal ones with parameters variation due to the game of players with each other. Attacking algorithms were varied in 100 sets of parameters, disposal algorithms — in 150 sets. Major result is that using such algorithms the modified “Sea battle” game can be solved — that implies the possibility of finding stable pure and mixed strategies of behaviour, which guarantee the sides gaining optimal results in game theory terms. Moreover, influence of modifying the rules of “Sea battle” game is estimated. Comparison with prior authors’ results on this topic was made. Based on matching the payoff matrices with the statistical analysis, completed earlier, it was found out that standard “Sea battle” game could be represented as a special case of game modifications, observed in this article. The job is important not only because of its applications in war area, but in civil areas as well. Use of article’s results could save resources in exploration, provide an advantage in war conflicts, defend devices under devastating impact.
-
Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.
Ключевые слова: модель Моррис –Лекара, нейронная возбудимость, гауссовский шум, индуцированные шумом переходы, стохастическая чувствительность, доверительные области.
Analysis of additive and parametric noise effects on Morris – Lecar neuron model
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468Views (last year): 11.This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.
-
Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.
Repressilator with time-delayed gene expression. Part I. Deterministic description
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259Views (last year): 30.The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.
-
Моделирование цитокинового шторма при респираторных вирусных инфекциях
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 619-645В данной работе мы разрабатываем модель иммунного ответа на респираторные вирусные инфекции с учетом некоторых особенностей инфекции SARS-CoV-2. Модель представляет из себя систему обыкновенных дифференциальных уравнений для концентраций эпителиальных клеток, иммунных клеток, вируса и воспалительных цитокинов. Анализ существования и устойчивости стационарных точек дополняется численным моделированием с целью изучения динамики решений. Поведение решений характеризуется большим ростом концентрации вируса, наблюдаемым для острых респираторных вирусных инфекций.
На первом этапе мы изучаем врожденный иммунный ответ, основанный на защитных свойствах интерферона, производимого инфицированными вирусом клетками. С другой стороны, вирусная инфекция подавляет выработку интерферона. Их конкуренция может привести к бистабильности системы с разными режимами развития инфекции с высокой или низкой интенсивностью. В случае острого протекания заболевания и существенного роста концентрации вируса инкубационный период и максимальная вирусная нагрузка зависят от исходной вирусной нагрузки и параметров иммунного ответа. В частности, увеличение исходной вирусной нагрузки приводит к сокращению инкубационного периода и увеличению максимальной вирусной нагрузки.
Для изучения возникновения и динамики цитокинового шторма в модель вводится уравнение для концентрации провоспалительных цитокинов, производимых клетками врожденного иммунного ответа. В зависимости от параметров система может оставаться в режиме с относительно низким уровнем провосполительных цитокинов, наблюдаемым для обычного протекания вирусных инфекций, или за счет положительной обратной связи между воспалением и иммунными клетками перейти в режим цитокинового шторма, характеризующегося избыточным производством провоспалительных цитокинов. При этом цитокиновый шторм, вызванный вирусной инфекцией, может продолжаться и после ее окончания. Кроме того, гибель клеток, инициируемая провосполительными цитокинами (апоптоз), может стимулировать переход к цитокиновому шторму. Однако апоптоз в отдельности от врожденного иммунного ответа не может инициировать или поддерживать протекание цитокинового шторма. Предположения модели и полученные результаты находятся в качественном согласии с экпериментальными и клиническими данными.
Modelling of cytokine storm in respiratory viral infections
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.
At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.
In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.
-
Мультистабильность для системы трех конкурирующих видов
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.
Ключевые слова: мультистабильность, динамика, косимметрия, популяции, уравнения Лотки – Вольтерры, семейство равновесий, предельный цикл, обыкновенные дифференциальные уравнения.
Multistability for system of three competing species
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1325-1342The study of the Volterra model describing the competition of three types is carried out. The corresponding system of first-order differential equations with a quadratic right-hand side, after a change of variables, reduces to a system with eight parameters. Two of them characterize the growth rates of populations; for the first species, this parameter is taken equal to one. The remaining six coefficients define the species interaction matrix. Previously, in the analytical study of the so-called symmetric model [May, Leonard, 1975] and the asymmetric model [Chi, Wu, Hsu, 1998] with growth factors equal to unity, relations were established for the interaction coefficients, under which the system has a one-parameter family of limit cycles. In this paper, we carried out a numerical-analytical study of the complete system based on a cosymmetric approach, which made it possible to determine the ratios for the parameters that correspond to families of equilibria. Various variants of oneparameter families are obtained and it is shown that they can consist of both stable and unstable equilibria. In the case of an interaction matrix with unit coefficients, a multicosymmetry of the system and a two-parameter family of equilibria are found that exist for any growth coefficients. For various interaction coefficients, the values of growth parameters are found at which periodic regimes are realized. Their belonging to the family of limit cycles is confirmed by the calculation of multipliers. In a wide range of values that violate the relationships under which the existence of cycles is ensured, a slow oscillatory establishment, typical of the destruction of cosymmetry, is obtained. Examples are given where a fixed value of one growth parameter corresponds to two values of another parameter, so that there are different families of periodic regimes. Thus, the variability of scenarios for the development of a three-species system has been established.
-
Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.
Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.
Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.
Ключевые слова: нелинейная супратрансмиссия, солитон, дискретный бризер, нелинейная динамика решеток, инфратрансмиссия, уединенная волна, компьютерная модель.
The effect of nonlinear supratransmission in discrete structures: a review
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.
The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.
Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.
-
Моделирование конформационного перехода в фотосинтетическом реакционном центре бактерии Rb. sphaeroides
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 437-448Методом квантово-химического моделирования исследован возможный конформационный переход в локальном окружении первичного хинона в фотосинтетическом реакционном центре (РЦ) бактерии Rhodobacter sphaeroides, сопровождающий процесс переноса электрона. Исходя из представления о наличии двух устойчивых конформационных состояний РЦ, предложена кинетическая модель, хорошо описывающая экспериментальные температурные зависимости скорости реакции рекомбинации P+QA- → PQA. Результаты квантово-химического моделирования сайта связывания первичного хинона позволяют предложить на роль указанного конформационного изменения небольшое смещение кольца убихинона, приводящее к разрыву водородной связи, образуемой 4–C=O группой убихинона с гистидином M219, и образованию новой водородной связи с гидроксильной группой треонина M222. Значения параметров модели, полученные с помощью квантово-химических расчетов, качественно согласуются со значениями параметров кинетической модели, используемых для описания реакции рекомбинации.
Ключевые слова: Rhodobacter sphaeroides, фотосинтетический центр, конформационный переход, реакция рекомбинации.
Modelling of conformational change within photosynthetic reaction center of Rb. sphaeroides bacteria
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 437-448Views (last year): 2.A possible conformational change, which accompanies electron tranport in Rb. sphaeroides photosynthetic reaction center (RC), was studied using quantum-chemical approach. A kinetic model which takes into account two conformational states of RC is proposed. The model quantitatively describes experimental temperature dependencies of recombination reaction rate P+QA- → PQA. Quantum-chemical modeling of primary quinone (QA) binding site permits one to propose a minor shift of QA as a conformational change of interest. The shift is accompanied by break of a hydrogen bond between 4–C=O group of QA and histidine M219, and formation of a new hydrogen bond between QA and hydroxyl group of threonine M222. Characteristics of this conformational change were obtained from quantum-chemical calculations and match parameters of kinetic model in qualitative fashion.
-
Анализ динамических режимов взаимодействующих синтетических генетических репрессиляторов
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 403-418В работе изучена динамика двух искусственных генетических осцилляторов — репрессиляторов, — связанных диффузией аутоиндуктора. Выбрана модель генетической сети, в которой производство, диффузия и ген-мишень для аутоиндуктора обеспечивают расталкивающее взаимодействие между фазовыми точками. Исследовано появление периодических режимов, устойчивых неоднородных стационарных состояний в зависимости от главных бифуркационных параметров: силы связи и скорости синтеза мРНК. Показано, что добавление в генетическую схему аутоиндуктора приводит к исчезновению предельного цикла через бифуркацию бесконечного периода в изолированном осцилляторе, если скорость синтеза мРНК велика. Найден гистерезис между предельным циклом и стационарным состоянием, размер которого зависит от соотношения времен жизни мРНК и белков. Взаимодействие двух осцилляторов приводит к появлению устойчивого противофазного предельного цикла, который может переходить в хаотический режим через «тор-хаос» или путем каскада Фейгенбаума.
Dynamics analysis of coupled synthetic genetic repressilators
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 403-418Views (last year): 2. Citations: 2 (RSCI).We have investigated dynamics of synthetic genetic oscillators — repressilators — coupled through autoinducer diffusion. The model of the system with phase-repulsive coupling structure is under consideration. We have examined emergence of periodic regimes, stable inhomogeneous steady states depending on the main systems’ parameters: coupling strength and maximal transcription rate. It has been shown that autoinducer production module added to the isolated repressilator cause the limit cycle to disappear through infinite period bifurcation for sufficiently large transcription rate. We have found hysteresis of limit cycle and stable steady state the size of which is determined by ratio between mRNA and protein lifetimes. Two coupled oscillators system demonstrates stable anti-phase oscillations which can become a chaotic regime through invariant torus emergence or via Feigenbaum scenario.
-
Центрально-симметричные стационарные состояния в одной модели электродиффузии
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 99-104Изучается математическая модель электродиффузии в центрально-симметричном случае. Эта модель в частности описывает перенос ионов Li+ в некоторых электрохимических источниках тока. Нами показано, что при заданных на внешней границе значениях концентрации ионов и электрического потенциала в модели существует единственное стационарное решение, которое является устойчивым аттрактором нестационарных решений при различных распределениях начальных значений.
Centrally symmetric steady states in a model of electrodiffusion
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 99-104Views (last year): 1.We study the centrally symmetric mathematical model of electrodiffusion. This model describes in particular the transport of the Li+ ions in certain electrochemical current sources. We demonstrate that the steady state solution of the considered model exists and is unique if the boundary values of the ion concentration and electric potential are given. This solution also proves to be the stable attractor of the time-dependent solutions with different initial value distributions.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"