Результаты поиска по 'численный анализ':
Найдено статей: 198
  1. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Krivovichev G.V.
    Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500

    Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.

    Views (last year): 2. Citations: 1 (RSCI).
  2. Башкирцева И.А., Бояршинова П.В., Рязанова Т.В., Ряшко Л.Б.
    Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660

    Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.

    Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Views (last year): 14. Citations: 4 (RSCI).
  3. Схемы WENO (взвешенные, существенно не осциллирующие схемы) в настоящее время имеют достаточно обширную область применения для аппроксимации разрывных решений в уравнениях в частных производных. Данные схемы применялись для прямого численного моделирования и моделирования динамики больших вихрей в задачах газовой динамики, задачах МГД и даже для задач нейтронной кинетики. Данная работа посвящена уточнению некоторых характеристик схем WENO и численному моделированию характерных задач, которые позволяют сделать выводы обоб ласти применимости данных схем. Первая часть работы содержала результаты по доказательству свойств аппроксимации, устойчивости и сходимости схем WENO5, WENO7, WENO9, WENO11 и WENO13. Во второй части работы проводится модифицированный волновой анализ, позволяющий сделать вывод о дисперсионных и диссипативных свойствах схем. Далее, проводится численное моделирование ряда характерных задач для уравнений гиперболического типа: уравнений переноса (одномерное и двухмерное), уравнения Хопфа, уравнения Бюргерса (с малой диссипацией) и уравнения динамики невязкого газа (одномерное и двухмерное). Для каждой из задач, подразумевающих гладкое решение, приведено практическое вычисление порядка аппроксимации с помощью метода Рунге. Во всех задачах проверяются выводы, сделанные в первой части работы по влиянию шага по времени на нелинейные свойства схем. В частности, для уравнений переноса разрывной функции и уравнений Хопфа показано, что невыполнение указанных рекомендаций ведет вначале к росту вариации решения, а затем включается диссипативный нелинейный механизм схемы и аппроксимация падает. Практически подтверждены выводы первой части по условиям устойчивости. Для одномерного уравнения Бюргерса проведено моделирование затухания случайно распределенных начальных условий в периодической области и выполнено сопоставление со спектральным методом. Делается вывод о применимости схем WENO7–WENO13 для прямого численного моделирования турбулентности. В конце демонстрируются возможности схем на начально-краевых задачах для уравнений динамики невязкого газа: неустойчивость Рэлея–Тейлора и отражение ударной волны от клина с образованием сложной конфигурации ударных волн и разрывов.

    WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.

    Views (last year): 13.
  4. В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.

    The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.

    Views (last year): 15. Citations: 2 (RSCI).
  5. Яковлева Т.В.
    Определение параметров сигнала и шума при анализе райсовских данных методом моментов низших нечетных порядков
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 717-728

    В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях статистического распределения Райса посредством метода моментов, основанного на анализе данных для начальных моментов 1-го и 3-го порядков случайной райсовской величины. Получена в явном виде система уравнений для искомых параметров сигнала и шума. В предельном случае малой величины отношения сигнала к шуму получены аналитические формулы, позволяющие рассчитать искомые параметры задачи без необходимости численного решения уравнений. Развитый в работе метод обеспечивает эффективное разделение информативной и шумовой компонент анализируемых данных в отсутствие каких-либо априорных предположений, лишь на основе обработки результатов выборочных измерений сигнала. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации и т. д. Как показали результаты исследований, решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи, решаемой в предположении априорной известности второго параметра. В работе приведены результаты компьютерного моделирования разработанного метода. Результаты численного расчета параметров сигнала и шума разработанным методом подтверждают его эффективность. Проведено сопоставление точности определения искомых параметров развитым в работе методом и ранее разработанным вариантом метода моментов, основанным на обработке измеренных данных для низших четных моментов анализируемого сигнала.

    Yakovleva T.V.
    Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728

    The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.

    Views (last year): 10. Citations: 1 (RSCI).
  6. Кривовичев Г.В.
    Кинетические уравнения для моделирования диффузионных процессов методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 919-936

    В работе рассмотрена система линейных кинетических уравнений с релаксационным членом типа Бхатнагара–Гросса–Крука для моделирования линейных диффузионных процессов с помощью метода решеточных уравнений Больцмана. Коэффициенты системы зависят от дискретных скоростей, определяемых точками шаблона, построенного в пространстве скоростей частиц. Система может рассматриваться как альтернативная математическая модель для описания диффузионного процесса. Рассматривается несколько случаев базовых шаблонов в пространстве скоростей частиц. Рассмотрены случаи зависящих от параметра коэффициентов. С использованием асимптотического метода Чепмена–Энскога показано, что система может быть сведена к линейному уравнению диффузии, а также получено выражение для коэффициента диффузии. Как результат анализа полученного выражения показано, что решения, получаемые по решеточным уравнениям Больцмана, обладают численной диффузией. Анализ устойчивости проводится посредством исследования волновых мод, допускаемых решениями гиперболической системы уравнений. Для случаев других шаблонов предложен алгоритм численного исследования устойчивости. В результате расчетов показано, что решения системы являются устойчивыми в широком диапазоне входных параметров. Показан достаточный характер физически допустимого условия положительности времени релаксации как условия устойчивости. Посредством аналитических, а также численных исследований показано, что решения в виде волновых мод обладают дисперсией, не типичной для решений линейного уравнения диффузии. Но при этом свойственные дисперсии искажения волнового пакета будут демпфироваться из-за наличия асимптотической устойчивости и в целом поведение решения близко к решению уравнения диффузии. Разностные схемы для построенной системы, помимо моделирования диффузии, могут быть использованы при решении стационарных задач методом установления и в методе расщепления для расчетов течений вязкой жидкости. Полученные результаты могут оказаться полезными при сравнении друг с другом теоретических свойств различных разностных схем метода решеточных уравнений Больцмана для численного моделирования диффузии.

    Krivovichev G.V.
    Kinetic equations for modelling of diffusion processes by lattice Boltzmann method
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 919-936

    The system of linear hyperbolic kinetic equations with the relaxation term of Bhatnagar–Gross–Krook type for modelling of linear diffusion processes by the lattice Boltzmann method is considered. The coefficients of the equations depend on the discrete velocities from the pattern in velocity space. The system may be considered as an alternative mathematical model of the linear diffusion process. The cases of widely-used patterns on speed variables are considered. The case of parametric coefficients takes into account. By application of the method of Chapman–Enskog asymptotic expansion it is obtained, that the system may be reduced to the linear diffusion equation. The expression of the diffusion coefficient is obtained. As a result of the analysis of this expression, the existence of numerical diffusion in solutions obtained by application of lattice Boltzmann equations is demonstrated. Stability analysis is based on the investigation of wave modes defined by the solutions of hyperbolic system. In the cases of some one-dimensional patterns stability analysis may be realized analytically. In other cases the algorithm of numerical stability investigation is proposed. As a result of the numerical investigation stability of the solutions is shown for a wide range of input parameters. The sufficiency of the positivity of the relaxation parameter for the stability of solutions is demonstrated. The dispersion of the solutions, which is not realized for a linear diffusion equation, is demonstrated analytically and numerically for a wide range of the parameters. But the dispersive wave modes can be damped as an asymptotically stable solutions and the behavior of the solution is similar to the solution of linear diffusion equation. Numerical schemes, obtained from the proposed systems by various discretization techniques may be considered as a tool for computer modelling of diffusion processes, or as a solver for stationary problems and in applications of the splitting lattice Boltzmann method. Obtained results may be used for the comparison of the theoretical properties of the difference schemes of the lattice Boltzmann method for modelling of linear diffusion.

    Views (last year): 25.
  7. Долуденко А.Н.
    O контактных неустойчивостях вязкопластических жидкостей в трехмерной постановке задачи
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 431-444

    В работе изучаются неустойчивости Рихтмайера–Мешкова и Рэлея–Тейлора вязкопластических жидкостей (или, в частности, бингамовских жидкостей, обладающих предельным напряжением сдвига) в трехмерной постановке задачи. Анализируется развитие неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовских жидкостей при одномодовом возмущении скорости контактной границы. Анализ проводится на основе численного моделирования с использованием метода Мак-Кормака и метода объема жидкости (метода VOF — Volume of Fluid) для отслеживания контактной границы в различные моменты времени. Представлены результаты численного моделирования неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовской жидкости и их сравнение как с теорией, так и с результатами моделирования ньютоновской жидкости. В результате проведенных численных расчетов показано, что предел текучести вязкопластической жидкости существенно влияет на характер неустойчивости как Рэлея–Тейлора, так и Рихтмайера–Мешкова: существует критическая амплитуда начального возмущения поля скорости контактной границы, при превышении которой начинается развитие неустойчивостей. Если амплитуда начального возмущения поля скорости меньше критического значения, то это возмущение относительно быстро затухает и развития неустойчивостей не происходит. При превышении начальным возмущением критической амплитуды характер развития неустойчивостей напоминает таковой у ньютоновской жидкости. При рассмотрении неустойчивости Рихтмайера–Мешкова оцениваются критические амплитуды начального возмущения поля скорости контактной границы при различных значениях предельного напряжения сдвига бингамовской жидкости. Кроме того, наблюдается отличие поведения неньютоновской жидкости при развитии неустойчивости от плоского случая: при одном и том же зна- чении предельного напряжения сдвига в трехмерной геометрии интервал значений амплитуды начального возмущения, при котором происходит переход от покоя к движению, несколько уже. Помимо этого показано, что критическая амплитуда начального возмущения контактной границы для неустойчивости Рэлея–Тейлора ниже, чем для неустойчивости Рихтмайера–Мешкова. Это объясняется действием силы тяжести, «помогающей» развитию неустойчивости и противодействующей силам вязкого трения.

    Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and Richtmyer–Meshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the Richtmyer–Meshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the Richtmyer–Meshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Views (last year): 19.
  8. Кожанов Д.А., Любимов А.К.
    Моделирование гибких тканых композитов в системе ANSYS Mechanical APDL
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 789-799

    В настоящей работе предложен вариант импорта в систему ANSYS Mechanical APDL модели поведения гибких тканых композиционных материалов с армирующей тканью полотняного переплетения при статическом растяжении вдоль нитей армирования. Импорт осуществлен при помощи использования, разработанного авторами и представленного в текущей работе модуля интеграции, основанного на использовании аналитической модели деформирования исследуемого материала, представленной в опубликованных ранее статьях и учитывающей изменения геометрической структуры, происходящие в армирующем слое материала в процессе деформирования, образование необратимых деформаций и взаимодействие накрест лежащих нитей армирующей ткани. Во введении кратко описаны основные вводимые характеристики полотняного переплетения армирующей ткани и аналитической модели, импортируемой в ANSYS. Аналитическая модель основана на описании процессов деформирования элементарной периодической ячейки исследуемого класса материалов. Входными параметрами модуля являются механические характеристики материалов, входящих в состав композита (связующее и материал нитей армирования), геометрические характеристики переплетения армирующей ткани. Алгоритм импорта модели основан на вычислении и передачи в ANSYS расчетных точек диаграммы деформирования материала при одноосном растяжения вдоль направления армирования и использовании вложенных в систему ANSYS пользовательской моделей материала Multilinear Kinematich Hardening. Аналитическая модель, импортируемая при помощи представленного модуля, позволяет моделировать композиционный материал с армирующей тканью без детального описания геометрии переплетения нитей при моделировании материала в целом. Выполнена верификация импортированной модели. Для верификации были проведены натурные экспериментальные исследования и численное моделирование растяжения образцов из гибких тканых композитов. В экспериментах принимали участие образцы трех марок: VP4126, VP6131 и VP6545. Погрешность импортированной в ANSYS модели составила менее 10 % относительно экспериментальных исследований для всех марок материала. Анализ полученных результатов показал хорошее качественное и количественное согласование расчетов в системе ANSYS с применением импортированной модели и натурных испытаний до величин предельных деформаций, соответствующих разрушению образцов материала для всех исследуемых марок гибких тканых композитов, что позволяет сделать вывод о возможности применения предложенного модуля при моделировании процессов деформирования гибких тканых композитов и конструкций, созданных из таких материалов при статическом одноосном растяжении вдоль нитей армирования.

    Kozhanov D.A., Lyubimov A.K.
    Import model of flexible woven composites in ANSYS Mechanical APDL
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 789-799

    A variant of import into ANSYS Mechanical APDL system of the model of behavior of flexible woven composite materials with reinforcing weaving cloth of linen at static stretching along the reinforcement yarns is offered. The import was carried out using an integration module based on the use of an analytical model of deformation of the material under study. The model is presented in the articles published earlier and takes into account the changes in the geometric structure occurring in the reinforcing layer of the material during the deformation process, the formation of irreversible deformations and the interaction of cross-lying reinforcing fabric threads. In the introduction input characteristics of the plain weave of the reinforcing fabric and the analytical model imported into ANSYS are briefly described. The input parameters of the module are the mechanical characteristics of the materials that make up the composite (binder and material of reinforcement yarns), the geometric characteristics of the interlacing of the reinforcing fabric. The algorithm for importing the model is based on the calculation and transfer in ANSYS of the calculated points of the material stress-strain diagram for uniaxial stretching along the reinforcement direction and using the Multilinear Kinematich Hardening model material embedded in the ANSYS. The analytical model imported with the help of the presented module allows to model a composite material with reinforcing fabric without a detailed description of the geometry of the interlacing of threads during modeling of the material as a whole. The imported model was verified. For verification full-scale experimental studies and numerical simulation of the stretching of samples from flexible woven composites were carried out. The analysis of the obtained results showed good qualitative and quantitative agreement of calculations.

    Views (last year): 34.
  9. Долгов Е.В., Колосов Н.С., Фирсов А.А.
    Исследование влияния искрового разряда на смешение струи газообразного топлива со сверхзвуковым воздушным потоком
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 849-860

    В работе представлены результаты численного моделирования влияния протяженного искрового разряда на динамику перемешивания инжектируемой газовой струи со сверхзвуковым воздушным потоком. Расчеты проводились в программном комплексе FlowVision. Подача топлива осуществляется при помощи инжектора, расположенного на стенке канала, а разряд организован вблизи стенки ниже по потоку относительно инжектора. Моделирование электрического искрового разряда выполнено при помощи объемного источника тепла. С целью описания принципиального вида плазменного актуатора для ускорения перемешивания в сверхзвуковом потоке (число Маха М = 2) в ходе исследования выполнено варьирование энерговклада в разряд в диапазоне 100–500 мДж на один импульс, а также определено влияние формы и местоположения разряда относительно топливного инжектора. Проведено исследование режимов инжекции топлива в сверхзвуковой воздушный поток и найден оптимальный режим истечения струи газа для исследования влияния искрового разряда на смешение. Разработан метод анализа картины возмущений границы раздела «топливо–окислитель», вызванных работой импульсного искрового разряда. Подготовлена программа в среде LabView для получения количественной характеристики для дальнейшего сравнения полученных результатов с экспериментальными данными.

    Результаты моделирования позволяют сделать вывод, что протяженный искровой разряд, расположенный ниже по потоку относительно инжектора и расположенный вдоль потока, обеспечивает максимальное увеличение границы раздела между струей топлива и основным потоком. Типичная частота повторения импульсов разряда в импульсно-периодическом режиме должна составлять более 6 кГц при длине разряда ~10 мм, чтобы обеспечить постоянное влияние на смешение в потоке со скоростью 500 м/с.

    Dolgov E.V., Kolosov N.S., Firsov A.A.
    The study of the discharge influence on mixing of gaseous fuel jet with the supersonic air flow
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 849-860

    The paper presents the results of numerical simulation of the effect of a long spark discharge on the mixing dynamics of an injected gas jet with supersonic air flow. The calculations were performed using the CFD software package FlowVision. The fuel was supplied using an injector located on the channel wall, and the discharge was organized near the wall downstream of the injector. Simulation of electrical spark discharge was performed using a volumetric heat source. In order to describe the principal specifications of a plasma actuator to accelerate mixing in a supersonic flow (Mach number M = 2), the research involved varying the energy impact to the discharge in the range of 100–500 mJ per pulse, determining the influence of the shape and location of the discharge. A study of the fuel injection modes in a supersonic air flow has been carried out and an optimal gas jet outflow regime has been found to study the effect of a spark discharge. A method has been developed for analyzing the disturbance pattern of the fuel-oxidant interface caused by the operation of a pulsed spark discharge. A program was prepared in the LabView software environment for obtaining quantitative characteristics for further comparison with the results obtained in the experiment.

    The simulation results allow us to conclude that the long spark discharge located along the flow downstream of the injector provides the maximum increase in the interface between the jet of fuel and the main flow. A typical repetition frequency of discharge pulses in a pulse-periodic mode should be more than 6 kHz with a discharge length of ~10 mm to ensure a continuous effect on the mixing at a flow velocity of 500 m/s.

  10. Андрущенко В.А., Моисеева Д.С., Моторин А.А., Ступицкий Е.Л.
    Моделирование физических процессов воздействия мощного ядерного взрыва на астероид
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 861-877

    В рамках проблемы предотвращения астероидно-кометной угрозы выполнен физический и теоретический анализ процессов воздействия различных факторов надповерхностного ядерного взрыва достаточно высокой энергии на астероид во внеатмосферных условиях космического пространства. Показано, что в соответствии с энергией и проницаемой способностью плазмы продуктов взрыва, рентгеновского и гамма-нейтронного излучения на поверхности астероида, обращенной к взрыву, образуется слоистая структура с разной плотностью энергии, зависящей от угловых координат. Для каждого слоя выяснен временной характер трансформации энергии внутри него и определены роли различных фото- и столкновительных процессов. Воздействие высокоскоростного потока плазмы носит эрозионный характер, при этом импульс плазмы передается астероиду. Показано, что в тонком слое поглощения рентгеновского излучения вещество астероида разогревается до высоких температур, и в результате его расширения формируется импульс отдачи, который не является определяющим из-за малой массы расширяющейся высокотемпературной плазмы. Расчеты показали, что основной импульс, полученный астероидом, связан с уносом разогретого слоя вещества, образованного нейтронным потоком (7.5 · 1014 г · см/с). Показано, что астероид с радиусом ~100 м приобретает при этом скорость ≈ 100 см/с. Расчеты выполнены с учетом затрат энергии взрыва на разрушение аморфной структуры вещества астероида (~1 эВ/атом = 3.8 · 1010 эрг/г) и на ионизацию в области высокотемпературного слоя. На основе аналогичного анализа получено приближенное выражение для оценки среднего размера осколков при возможном разрушении астероида ударными волнами, образующимися внутри него под действием импульсов давления. Выполнен физический эксперимент в лабораторных условиях, имитирующий фрагментацию каменного астероида и подтвердивший справедливость полученной зависимости от выбранных значений определенных параметров. В результате численных исследований воздействия взрыва, произведенных на различном расстоянии от поверхности астероида, показано, что учет реальной геометрии отколочного слоя дает оптимальную высоту для формирования максимального импульса астероида примерно в 1.5 раза большую, чем аналогичные оценки по упрощенной модели. Предложена двухэтапная концепция воздействия ядерных взрывов на астероид с использованием радиолокационных средств наведения. Проанализировано возможное влияние возникающих ионизационных помех на радиолокационное слежение за разлетом крупных осколков астероида в условиях пространственно-временной эволюции всех элементов исследуемой динамической системы.

    Andruschenko V.A., Moiseeva D.S., Motorin A.A., Stupitsky E.L.
    Modeling the physical processes of a powerful nuclear explosion on an asteroid
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 861-877

    As part of the paper, a physical and theoretical analysis of the impact processes of various factors of a highaltitude and high-energy nuclear explosion on the asteroid in extra-atmospheric conditions of open space is done. It is shown that, in accordance with the energy and permeability of the plasma of explosion products, X-ray and gamma-neutron radiation, a layered structure with a different energy density depending on angular coordinates is formed on the surface of the asteroid. The temporal patterns of the energy transformation for each layer is clarified and the roles of various photo- and collision processes are determined. The effect of a high-speed plasma flow is erosive in nature, and the plasma pulse is transmitted to the asteroid. The paper presents that in a thin layer of x-ray absorption, the asteroid substance is heated to high temperatures and as a result of its expansion, a recoil impulse is formed, which is not decisive due to the small mass of the expanding high-temperature plasma. Calculations shows that the main impulse received by an asteroid is associated with the entrainment of a heated layer of a substance formed by a neutron flux (7.5 E 1014 g E cm/s). It is shown that an asteroid with a radius of ~100 m acquires a velocity of . 100 cm/s. The calculations were performed taking into account the explosion energy spent on the destruction of the amorphous structure of the asteroid material (~1 eV/atom = 3.8 E 1010 erg/g) and ionization in the region of the high-temperature layer. Based on a similar analysis, an approximation is obtained for estimating the average size of fragments in the event of the possible destruction of the asteroid by shock waves generated inside it under the influence of pressure impulses. A physical experiment was conducted in laboratory conditions, simulating the fragmentation of a stone asteroid and confirming the validity of the obtained dependence on the selected values of certain parameters. As a result of numerical studies of the effects of the explosion, carried out at different distances from the surface of the asteroid, it is shown that taking into account the real geometry of the spallation layer gives the optimal height for the formation of the maximum asteroid momentum by a factor of 1.5 greater than similar estimates according to the simplified model. A two-stage concept of the impact of nuclear explosions on an asteroid using radar guidance tools is proposed. The paper analyzes the possible impact of the emerging ionization interference on the radar tracking of the movement of large fragments of the asteroid in the space-time evolution of all elements of the studied dynamic system.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"