All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.
The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.
-
Analysis of mixed reality cross-device global localization algorithms based on point cloud registration
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 657-674State-of-the-art localization and mapping approaches for augmented (AR) and mixed (MR) reality devices are based on the extraction of local features from the camera. Along with this, modern AR/MR devices allow you to build a three-dimensional mesh of the surrounding space. However, the existing methods do not solve the problem of global device co-localization due to the use of different methods for extracting computer vision features. Using a space map from a 3D mesh, we can solve the problem of collaborative global localization of AR/MR devices. This approach is independent of the type of feature descriptors and localisation and mapping algorithms used onboard the AR/MR device. The mesh can be reduced to a point cloud, which consists of only the vertices of the mesh. We propose an approach for collaborative localization of AR/MR devices using point clouds that are independent of algorithms onboard the device. We have analyzed various point cloud registration algorithms and discussed their limitations for the problem of global co-localization of AR/MR devices indoors.
-
Motion control by a highly maneuverable mobile robot in the task of following an object
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.
-
Computer model development for a verified computational experiment to restore the parameters of bodies with arbitrary shape and dielectric properties
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1555-1571The creation of a virtual laboratory stand that allows one to obtain reliable characteristics that can be proven as actual, taking into account errors and noises (which is the main distinguishing feature of a computational experiment from model studies) is one of the main problems of this work. It considers the following task: there is a rectangular waveguide in the single operating mode, on the wide wall of which a technological hole is cut, through which a sample for research is placed into the cavity of the transmission line. The recovery algorithm is as follows: the laboratory measures the network parameters (S11 and/or S21) in the transmission line with the sample. In the computer model of the laboratory stand, the sample geometry is reconstructed and an iterative process of optimization (or sweeping) of the electrophysical parameters is started, the mask of this process is the experimental data, and the stop criterion is the interpretive estimate of proximity (or residual). It is important to note that the developed computer model, along with its apparent simplicity, is initially ill-conditioned. To set up a computational experiment, the Comsol modeling environment is used. The results of the computational experiment with a good degree of accuracy coincided with the results of laboratory studies. Thus, experimental verification was carried out for several significant components, both the computer model in particular and the algorithm for restoring the target parameters in general. It is important to note that the computer model developed and described in this work may be effectively used for a computational experiment to restore the full dielectric parameters of a complex geometry target. Weak bianisotropy effects can also be detected, including chirality, gyrotropy, and material nonreciprocity. The resulting model is, by definition, incomplete, but its completeness is the highest of the considered options, while at the same time, the resulting model is well conditioned. Particular attention in this work is paid to the modeling of a coaxial-waveguide transition, it is shown that the use of a discrete-element approach is preferable to the direct modeling of the geometry of a microwave device.
-
Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.
Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.
-
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic environments
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 131-141Views (last year): 10. Citations: 10 (RSCI).A mathematical model for the production of biogas from animal waste was developed. An algorithm for identification of model parameters was developed. The accuracy of model identification was performed. The result of simulation for batch and continuous modes of supply of substrate was shown. The optimum flow rate of the substrate for continuous operation was found.
-
An efficient algorithm for ${\mathrm{\LaTeX}}$ documents comparing
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 329-345The problem is constructing the differences that arise on ${\mathrm{\LaTeX}}$ documents editing. Each document is represented as a parse tree whose nodes are called tokens. The smallest possible text representation of the document that does not change the syntax tree is constructed. All of the text is splitted into fragments whose boundaries correspond to tokens. A map of the initial text fragment sequence to the similar sequence of the edited document corresponding to the minimum distance is built with Hirschberg algorithm A map of text characters corresponding to the text fragment sequences map is cunstructed. Tokens, that chars are all deleted, or all inserted, or all not changed, are selected in the parse trees. The map for the trees formed with other tokens is built using Zhang–Shasha algorithm.
Keywords: automation, editing distance, text analysis, lexeme, machine learning, metric, parse tree, syntax tree, token, ${\mathrm{\LaTeX}}$.Views (last year): 2. Citations: 2 (RSCI). -
Numerical modeling of ecologic situation of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 151-168Views (last year): 4. Citations: 31 (RSCI).The article covered results of three-dimensional modeling of ecologic situation of shallow water on the example of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system of Southern Federal University. Discrete analogs of convective and diffusive transfer operators of the fourth order of accuracy in the case of partial occupancy of cells were constructed and studied. The developed scheme of the high (fourth) order of accuracy were used for solving problems of aquatic ecology and modeling spatial distribution of polluting nutrients, which caused growth of phytoplankton, many species of which are toxic and harmful. The use of schemes of the high order of accuracy are improved the quality of input data and decreased the error in solutions of model tasks of aquatic ecology. Numerical experiments were conducted for the problem of transportation of substances on the basis of the schemes of the second and fourth orders of accuracy. They’re showed that the accuracy was increased in 48.7 times for diffusion-convection problem. The mathematical algorithm was proposed and numerically implemented, which designed to restore the bottom topography of shallow water on the basis of hydrographic data (water depth at individual points or contour level). The map of bottom relief of the Azov Sea was generated with using this algorithm. It’s used to build fields of currents calculated on the basis of hydrodynamic model. The fields of water flow currents were used as input data of the aquatic ecology models. The library of double-layered iterative methods was developed for solving of nine-diagonal difference equations. It occurs in discretization of model tasks of challenges of pollutants concentration, plankton and fish on multiprocessor computer system. It improved the precision of the calculated data and gave the possibility to obtain operational forecasts of changes in ecologic situation of shallow water in short time intervals.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"