All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Views (last year): 64. Citations: 21 (RSCI).
An introduction to the models of cellular automata is given. The three automata described on the plane are: Viner-Rosenbluth cellular automata, the game of Life and Kohomoto-Oono automata for modelling «reaction-diffusion» systems. There is built the generalization of cellular automata of the game of Life to arbitrary dimension of space and the generalization of Kohomoto-Oono automata in 3D.
-
Approximation of the solution of the non-stationary equation of heat conductivity by the method of probabilistic continuous asynchronous cellular automats for a one-dimensional case
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 293-301Views (last year): 10. Citations: 4 (RSCI).The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.
-
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Computer and physical-chemical modeling of the evolution of a fractal corrosion front
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 105-124Corrosion damage to metals and alloys is one of the main problems of strength and durability of metal structures and products operated in contact with chemically aggressive environments. Recently, there has been a growing interest in computer modeling of the evolution of corrosion damage, especially pitting corrosion, for a deeper understanding of the corrosion process, its impact on the morphology, physical and chemical properties of the surface and mechanical strength of the material. This is mainly due to the complexity of analytical and high cost of experimental in situ studies of real corrosion processes. However, the computing power of modern computers allows you to calculate corrosion with high accuracy only on relatively small areas of the surface. Therefore, the development of new mathematical models that allow calculating large areas for predicting the evolution of corrosion damage to metals is currently an urgent problem.
In this paper, the evolution of the corrosion front in the interaction of a polycrystalline metal surface with a liquid aggressive medium was studied using a computer model based on a cellular automat. A distinctive feature of the model is the specification of the solid body structure in the form of Voronoi polygons used for modeling polycrystalline alloys. Corrosion destruction was performed by setting the probability function of the transition between cells of the cellular automaton. It was taken into account that the corrosion strength of the grains varies due to crystallographic anisotropy. It is shown that this leads to the formation of a rough phase boundary during the corrosion process. Reducing the concentration of active particles in a solution of an aggressive medium during a chemical reaction leads to corrosion attenuation in a finite number of calculation iterations. It is established that the final morphology of the phase boundary has a fractal structure with a dimension of 1.323 ± 0.002 close to the dimension of the gradient percolation front, which is in good agreement with the fractal dimension of the etching front of a polycrystalline aluminum-magnesium alloy AlMg6 with a concentrated solution of hydrochloric acid. It is shown that corrosion of a polycrystalline metal in a liquid aggressive medium is a new example of a topochemical process, the kinetics of which is described by the Kolmogorov–Johnson– Meil–Avrami theory.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"