Результаты поиска по 'cluster':
Найдено статей: 50
  1. Sitnikov S.S., Tcheremissine F.G., Sazykina T.A.
    Simulation of the initial stage of a two-component rarefied gas mixture outflow through a thin slit into vacuum
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 747-759

    The paper considers the process of flow formation in an outflow of a binary gas mixture through a thin slit into vacuum. An approach to modeling the flows of rarefied gas mixtures in the transient regime is proposed based on the direct solution of the Boltzmann kinetic equation, in which the conservative projection method is used to calculate the collision integrals. Calculation formulas are provided; the calculation procedure is described in detail in relation to the flow of a binary gas mixture. The Lennard–Jones potential is used as an interaction potential of molecules. A software modeling environment has been developed that makes it possible to study the flows of gas mixtures in a transitional regime on systems of cluster architecture. Due to the use of code parallelization technologies, an acceleration of calculations by 50–100 times was obtained. Numerical simulation of a two-dimensional outflow of a binary argon-neon gas mixture from a vessel into vacuum through a thin slit is carried out for various values of the Knudsen number. The graphs of the dependence of gas mixture components output flow on time in the process of establishing the flow are obtained. Non-stationary regions of strong separation of gas mixture components, in which the molecular densities ratio reaches 10 or more, were discovered. The discovered effect can have applications in the problem of gas mixtures separation.

  2. Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  3. Lyubushin A.A., Kopylova G.N., Kasimova V.A., Taranova L.N.
    Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521

    The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.

  4. Kapitan V.U., Peretyat'ko A.A., Ivanov U.P., Nefedev K.V., Belokon V.I.
    Superscale simulation of the magnetic states and reconstruction of the ordering types for nanodots arrays
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 309-318

    We consider two possible computational methods of the interpretation of experimental data obtained by means of the magnetic force microscopy. These methods of macrospin distribution simulation and reconstruction can be used for research of magnetization reversal processes of nanodots in ordered 2D arrays of nanodots. New approaches to the development of high-performance superscale algorithms for parallel executing on a supercomputer clusters for solving direct and inverse task of the modeling of magnetic states, types of ordering, reversal processes of nanosystems with a collective behavior are proposed. The simulation results are consistent with experimental results.

    Views (last year): 2.
  5. Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
  6. Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Asliamov T.I., Bolshakov T.E.
    Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415

    We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.

  7. Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

  8. Lyubushin A.A., Rodionov E.A.
    Analysis of predictive properties of ground tremor using Huang decomposition
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958

    A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.

  9. Sobolev O.V., Lunina N.L., Lunin V.Yu.
    The use of cluster analysis methods for the study of a set of feasible solutions of the phase problem in biological crystallography
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 91-101

    X-ray diffraction experiment allows determining of magnitudes of complex coefficients in the decomposition of the studied electron density distribution into Fourier series. The determination of the lost in the experiment phase values poses the central problem of the method, namely the phase problem. Some methods for solving of the phase problem result in a set of feasible solutions. Cluster analysis method may be used to investigate the composition of this set and to extract one or several typical solutions. An essential feature of the approach is the estimation of the closeness of two solutions by the map correlation between two aligned Fourier syntheses calculated with the use of phase sets under comparison. An interactive computer program ClanGR was designed to perform this analysis.

    Views (last year): 2.
  10. Orlova E.V.
    Credit risk assessment on the basis of multidimensional analysis
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 893-901

    The article is devoted to description the author's method of multidimensional analysis for generate an predictive assessment of organizations’ credit risk, based on the credit history information, which taking into account value and period of credit. An example of credit risk assessment is given.

    Views (last year): 7. Citations: 19 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"