All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308Views (last year): 11. Citations: 2 (RSCI).Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).
-
Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963Views (last year): 10. Citations: 1 (RSCI).А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.
The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.
-
The key approaches and review of current researches on dynamics of structured and interacting populations
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151Views (last year): 40. Citations: 2 (RSCI).The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.
-
Calibration of diversity indexes and search for ecologically tolerable levels of abiotic factors (case study: water objects of the Don river)
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 199-207Views (last year): 1.With the data obtained by hydrobiological monitoring of water objects of Don river for many years (1978-1988) calculation of rank distribution parameters and indexes of dominance for phytoplankton species abundance was conducted. The borders of investigated characteristics are calculated. They correspond to borders of ecological well-being - trouble conditions of phytoplankton communities. Ecologically tolerable levels for the core abiotic factors are found. Contribution of each of analyzed factors to a degree of ecological trouble is established.
-
Biological and physico-chemical data from natural objects for ecological environmental monitoring
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 199-207Views (last year): 1. Citations: 9 (RSCI).Methods for establishing standards of environmental quality by data of ecological monitoring are proposed. These are: methods of bioindication by indices of species diversity and size structure of communities, by indices of fish productivity; method for searching for reasons of environmental trouble and ranking them by their contribution into the trouble; methods for standardization of factors which are important as causes of environmental trouble.
-
Sectional model of non-free tree growth
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 307-322Views (last year): 1. Citations: 1 (RSCI).The three-dimensional model of biomass dynamics of a tree growing on a limited territory presented. The tree consists of structural sections periodically arising on its top. Each section generates a virtual "tree". Adjacent virtual trees are nested each other and their difference is the section. Sections have biomass dynamics which differs from the dynamics of the tree and gradually die off (including in course of the free growth of the tree), giving effect denudation of trunk from bottom. This is observed in nature. The 3D-model of biomass dynamics of a tree, growing in a limited area, for describing the biomass dynamics of sections and their constituent sectors uses equations similar to those proposed earlier for the 2D-tree model. Examples of biomass dynamics of sectors, sections and tree obtained using the developed model are presented. The dynamics of the hodographs of the azimuthal biomass distribution of sections demonstrates that the lower sections of a tree growing in a limited area, are in oppression and die (more quickly compared with the model of freely growing tree), and new sections on top of the tree appear and grow freely. As a result, "wave" of tree biomass runs up the trunk.
-
Model for building of the radio environment map for cognitive communication system based on LTE
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 127-146The paper is devoted to the secondary use of spectrum in telecommunication networks. It is emphasized that one of the solutions to this problem is the use of cognitive radio technologies and dynamic spectrum access for the successful functioning of which a large amount of information is required, including the parameters of base stations and network subscribers. Storage and processing of information should be carried out using a radio environment map, which is a spatio-temporal database of all activity in the network and allows you to determine the frequencies available for use at a given time. The paper presents a two-level model for forming a map of the radio environment of a cellular communication system LTE, in which the local and global levels are highlighted, which is described by the following parameters: a set of frequencies, signal attenuation, signal propagation map, grid step, current time count. The key objects of the model are the base station and the subscriber unit. The main parameters of the base station include: name, identifier, cell coordinates, range number, radiation power, numbers of connected subscriber devices, dedicated resource blocks. For subscriber devices, the following parameters are used: name, identifier, location, current coordinates of the device cell, base station identifier, frequency range, numbers of resource blocks for communication with the station, radiation power, data transmission status, list of numbers of the nearest stations, schedules movement and communication sessions of devices. An algorithm for the implementation of the model is presented, taking into account the scenarios of movement and communication sessions of subscriber devices. A method for calculating a map of the radio environment at a point on a coordinate grid, taking into account losses during the propagation of radio signals from emitting devices, is presented. The software implementation of the model is performed using the MatLab package. The approaches are described that allow to increase the speed of its work. In the simulation, the choice of parameters was carried out taking into account the data of the existing communication systems and the economy of computing resources. The experimental results of the algorithm for the formation of a radio environment map are demonstrated, confirming the correctness of the developed model.
-
The model of two-level intergroup competition
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 355-368At the middle of the 2000-th, scientists studying the functioning of insect communities identified four basic patterns of the organizational structure of such communities. (i) Cooperation is more developed in groups with strong kinship. (ii) Cooperation in species with large colony sizes is often more developed than in species with small colony sizes. And small-sized colonies often exhibit greater internal reproductive conflict and less morphological and behavioral specialization. (iii) Within a single species, brood size (i. e., in a sense, efficiency) per capita usually decreases as colony size increases. (iv) Advanced cooperation tends to occur when resources are limited and intergroup competition is fierce. Thinking of the functioning of a group of organisms as a two-level competitive market in which individuals face the problem of allocating their energy between investment in intergroup competition and investment in intragroup competition, i. e., an internal struggle for the share of resources obtained through intergroup competition, we can compare such a biological situation with the economic phenomenon of “coopetition” — the cooperation of competing agents with the goal of later competitively dividing the resources won in consequence In the framework of economic researches the effects similar to (ii) — in the framework of large and small group competition the optimal strategy of large group would be complete squeezing out of the second group and monopolization of the market (i. e. large groups tend to act cooperatively) and (iii) — there are conditions, in which the size of the group has a negative impact on productivity of each of its individuals (this effect is called the paradox of group size or Ringelman effect). The general idea of modeling such effects is the idea of proportionality — each individual (an individual/rational agent) decides what share of his forces to invest in intergroup competition and what share to invest in intragroup competition. The group’s gain must be proportional to its total investment in competition, while the individual’s gain is proportional to its contribution to intra-group competition. Despite the prevalence of empirical observations, no gametheoretic model has yet been introduced in which the empirically observed effects can be confirmed. This paper proposes a model that eliminates the problems of previously existing ones and the simulation of Nash equilibrium states within the proposed model allows the above effects to be observed in numerical experiments.
-
A study on the dynamics of pest population with biocontrol using predator, parasite in presence of awareness
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 713-729The coconut tree is often mentioned as the “tree of life” due to its immense benefits to the human community ranging from edible products to building materials. Rugose spiraling whitefly (RSW), a natural enemy seems to be a major threat to farmers in bringing up these coconut trees. A mathematical model to study the dynamics of pest population in the presence of predator and parasite is developed. The biologically feasible equilibrium points are derived. Local asymptotic stability as well as global asymptotic stability is analyzed at the points. Furthermore, in order to educate farmers on pest control, we have added the impact of awareness programs in the model. The conditions of existence and stability properties of all feasible steady states of this model are analyzed. The result reveals that predator and parasite play a major role in reducing the immature pest. It also shows that pest control activities through awareness programs further reduce the mature pest population which decreases the egg laying rate which in turn reduces the immature population.
-
Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560Views (last year): 6.A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"