Результаты поиска по 'complex systems':
Найдено статей: 133
  1. Bogdanov A.V., Degtyarev A.B., Khramushin V.N.
    High performance computations on hybrid systems: will "grand challenges" be solved?
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 429-437

    Based on CFD computations we provide the analysis of the possibilities for using modern hybrid distributed computational environments for large complex system simulation. We argue that only multilevel approach supported by new mathematical models of transport properties, dynamical representation of the problem with transport and internal processes separated, and modern paradigm of programming, taking into account specific properties of heterogeneous system, will make it possible to scale the problem effectively.

    Views (last year): 7. Citations: 8 (RSCI).
  2. Khavinson M.J., Kulakov M.P., Frisman Y.Y.
    Mathematical modeling of the age groups of employed peoples by the example of the southern regions of the Russian Far East
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 787-801

    The article focuses on a nonlinear mathematical model that describes the interaction of the different age groups of the employed population. The interactions are treated by analogy with population relationship (competition, discrimination, assistance, oppression, etc). Under interaction of peoples we mean the generalized social and economic mechanisms that cause related changes in the number of employees of different age groups. Three age groups of the employed population are considered. It is young specialists (15–29 years), workers with experience (30–49 years), the employees of pre-retirement and retirement age (50 and older). The estimation of model’s parameters for the southern regions of the Far Eastern Federal District (FEFD) is executed by statistical data. Analysis of model scenarios allows us to conclude the observed number fluctuations of the different ages employees on the background of a stable total employed population may be a consequence of complex interactions between these groups of peoples. Computational experiments with the obtained values of the parameters allowed us to calculate the rate of decline and the aging of the working population and to determine the nature of the interaction between the age groups of employees that are not directly as reflected in the statistics. It was found that in FEFD the employed of 50 years and older are discriminated against by the young workers under 29, employed up to 29 and 30–49 years are in a partnership. It is shown in most developed regions (Primorsky and Khabarovsk Krai) there is “uniform” competition among different age groups of the employed population. For Primorsky Krai we were able to identify the mixing effect dynamics. It is a typical situation for systems in a state of structural adjustment. This effect is reflected in the fact the long cycles of employed population form with a significant decrease in migration inflows of employees 30–49 years. Besides, the change of migration is accompanied by a change of interaction type — from employment discrimination by the oldest of middle generation to discrimination by the middle of older generation. In less developed regions (Amur, Magadan and Jewish Autonomous Regions) there are lower values of migration balance of almost all age groups and discrimination by young workers up 29 years of other age groups and employment discrimination 30–49 years of the older generation.

    Views (last year): 4. Citations: 3 (RSCI).
  3. Malkov S.Yu.
    World dynamics patterns modeling
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 419-432

    In the article is carried out the analysis of historical process with the use of methods of synergetics (science about the nonlinear developing systems in nature and the society), developed in the works of D. S. Chernavskii in connection with to economic and social systems. It is shown that social self-organizing depending on conditions leads to the formation of both the societies with the strong internal competition (Y-structures) and cooperative type societies (X-structures). Y-structures are characteristic for the countries of the West, X-structure are characteristic for the countries of the East. It is shown that in XIX and in XX centuries occurred accelerated shaping and strengthening of Y-structures. However, at present world system entered into the period of serious structural changes in the economic, political, ideological spheres: the domination of Y-structures concludes. Are examined the possible ways of further development of the world system, connected with change in the regimes of self-organizing and limitation of internal competition. This passage will be prolonged and complex. Under these conditions it will objectively grow the value of the civilizational experience of Russia, on basis of which was formed combined type social system. It is shown that ultimately inevitable the passage from the present do-mination of Y-structures to the absolutely new global system, whose stability will be based on the new ideology, the new spirituality (i.e., new “conditional information” according D. S. Chernavskii), which makes a turn from the principles of competition to the principles of collaboration.

    Views (last year): 17.
  4. Shumixin A.G., Aleksandrova A.S.
    Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740

    We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.

    Views (last year): 10.
  5. Favorskaya A.V.
    Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 653-673

    Ultrasound examination of material properties is a precision method for determining their elastic and strength properties in connection with the small wavelength formed in the material after impact of a laser beam. In this paper, the wave processes arising during these measurements are considered in detail. It is shown that full-wave numerical modeling allows us to study in detail the types of waves, topological characteristics of their profile, speed of arrival of waves at various points, identification the types of waves whose measurements are most optimal for examining a sample made of a specific material of a particular shape, and to develop measurement procedures.

    To carry out full-wave modeling, a grid-characteristic method on structured grids was used in this work and a hyperbolic system of equations that describes the propagation of elastic waves in the material of the thin plate under consideration on a specific example of a ratio of thickness to width of 1:10 was solved.

    To simulate an elastic front that arose in the plate due to a laser beam, a model of the corresponding initial conditions was proposed. A comparison of the wave effects that arise during its use in the case of a point source and with the data of physical experiments on the propagation of laser ultrasound in metal plates was made.

    A study was made on the basis of which the characteristic topological features of the wave processes under consideration were identified and revealed. The main types of elastic waves arising due to a laser beam are investigated, the possibility of their use for studying the properties of materials is analyzed. A method based on the analysis of multiple waves is proposed. The proposed method for studying the properties of a plate with the help of multiple waves on synthetic data was tested, and it showed good results.

    It should be noted that most of the studies of multiple waves are aimed at developing methods for their suppression. Multiple waves are not used to process the results of ultrasound studies due to the complexity of their detection in the recorded data of a physical experiment.

    Due to the use of full wave modeling and analysis of spatial dynamic wave processes, multiple waves are considered in detail in this work and it is proposed to divide materials into three classes, which allows using multiple waves to obtain information about the material of the plate.

    The main results of the work are the developed problem statements for the numerical simulation of the study of plates of a finite thickness by laser ultrasound; the revealed features of the wave phenomena arising in plates of a finite thickness; the developed method for studying the properties of the plate on the basis of multiple waves; the developed classification of materials.

    The results of the studies presented in this paper may be of interest not only for developments in the field of ultrasonic non-destructive testing, but also in the field of seismic exploration of the earth's interior, since the proposed approach can be extended to more complex cases of heterogeneous media and applied in geophysics.

    Views (last year): 3.
  6. Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  7. Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  8. Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  9. Elizarova T.G., Zherikov A.V., Kalachinskaya I.S.
    Numerical solution of quasi-hydrodynamic equations on non-structured triangle mesh
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 181-188

    A new flow modeling method on unstructured grid was proposed. As a basis system this method used quasi-hydro-dynamic equations. The finite volume method vas used for solving these equations. The Delaunay triangulation was used for constructing mesh. This proposed method was tested in modeling of incompressible flow through a channel with complex profile. The acquired results showed that the proposed method could be used in flow modeling in unstructured grid.

    Views (last year): 1.
  10. Ougolnitsky G.A., Usov A.B.
    Game-theoretic model of coordinations of interests at innovative development of corporations
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684

    Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.

    Views (last year): 9. Citations: 6 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"