Результаты поиска по 'computer model':
Найдено статей: 260
  1. Konstantinov D.V., Bzowski K., Korchunov A.G., Pietrzyk M.
    Modeling of axisymmetric deformation processes with taking into account the metal microstructure
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 897-908

    The article describes the state of the art computer simulation in the field of metal forming processes, the main problem points of traditional methods were identified. The method, that allows to predict the deformation distribution in the volume of deformable metal with taking into account of microstructure behavioral characteristics in deformation load conditions, was described. The method for optimizing computational resources of multiscale models by using statistical similar representative volume elements (SSRVE) was presented. The modeling methods were tested on the process of single pass drawing of round rod from steel grade 20. In a comparative analysis of macro and micro levels models differences in quantitative terms of the stress-strain state and their local distribution have been identified. Microlevel model also allowed to detect the compressive stresses and strains, which were absent at the macro level model. Applying the SSRVE concept repeatedly lowered the calculation time of the model while maintaining the overall accuracy.

    Views (last year): 9. Citations: 1 (RSCI).
  2. Bessudnova N.O., Tsiporukha Y.E., Shlyapnikova O.A.
    Numerical simulation of adhesive technology application in tooth root canal on restoration properties
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1069-1079

    The aim of the present study is to show how engineering approaches and ideas work in clinical restorative dentistry, in particular, how they affect the restoration design and durability of restored endodontically treated teeth. For these purposes a 3D-computational model of a first incisor including the elements of hard tooth tissues, periodontal ligament, surrounding bone structures and restoration itself has been constructed and numerically simulated for a variety of restoration designs under normal chewing loadings. It has been researched the effect of different adhesive technologies in root canal on the functional characteristics of a restored tooth. The 3D model designed could be applied for preclinical diagnostics to determine the areas of possible fractures of a restored tooth and prognosticate its longevity.

    Views (last year): 3.
  3. Belotelov N.V., Konovalenko I.A.
    Modeling the impact of mobility of individuals on space-time dynamics of a population by means of a computer model
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 297-305

    A computer model describing the spatial-temporal dynamics of populations of interacting with renewable resource is proposed. The life cycle of the individual is described. The algorithm for spatial mobility of individuals within an area is proposed, which takes into account nutritional and social activity. The paper presents the computational experiments with the model that mimic the movement of herds of animals in the area, and describes the model experiment when the group type of animal behavior due to changes in the characteristics of the environment and animal behavior the herd animals is formed, which later goes again in the group type of animal behavior.

    Views (last year): 2. Citations: 3 (RSCI).
  4. Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Views (last year): 8. Citations: 3 (RSCI).
  5. Tregubov V.P.
    Mathematical modelling of the non-Newtonian blood flow in the aortic arc
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269

    The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.

    Views (last year): 13.
  6. Favorskaya A.V., Golubev V.I.
    About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 761-771

    In this paper we present Rayleigh formulas obtained from Kirchhoff integral formulas, which can later be used to obtain migration images. The relevance of the studies conducted in the work is due to the widespread use of migration in the interests of seismic oil and gas seismic exploration. A special feature of the work is the use of an elastic approximation to describe the dynamic behaviour of a geological environment, in contrast to the widespread acoustic approximation. The proposed approach will significantly improve the quality of seismic exploration in complex cases, such as permafrost and shelf zones of the southern and northern seas. The complexity of applying a system of equations describing the state of a linear-elastic medium to obtain Rayleigh formulas and algorithms based on them is a significant increase in the number of computations, the mathematical and analytical complexity of the resulting algorithms in comparison with the case of an acoustic medium. Therefore in industrial seismic surveys migration algorithms for the case of elastic waves are not currently used, which creates certain difficulties, since the acoustic approximation describes only longitudinal seismic waves in geological environments. This article presents the final analytical expressions that can be used to develop software systems using the description of elastic seismic waves: longitudinal and transverse, thereby covering the entire range of seismic waves: longitudinal reflected PP-waves, longitudinal reflected SP-waves, transverse reflected PS-waves and transverse reflected SS-waves. Also, the results of comparison of numerical solutions obtained on the basis of Rayleigh formulas with numerical solutions obtained by the grid-characteristic method are presented. The value of this comparison is due to the fact that the method based on Rayleigh integrals is based on analytical expressions, while the grid-characteristic method is a method of numerical integration of solutions based on a calculated grid. In the comparison, different types of sources were considered: a point source model widely used in marine and terrestrial seismic surveying and a flat wave model, which is also sometimes used in field studies.

    Views (last year): 11.
  7. Kutovskiy N.A., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V.
    Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963

    А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.

    The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.

    Views (last year): 10. Citations: 1 (RSCI).
  8. Belotelov N.V., Konovalenko I.A., Nazarova V.M., Zaitsev V.A.
    Some features of group dynamics in the resource-consumer agent model
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 833-850

    The paper investigates the features of group dynamics of individuals-agents in the computer model of the animal population interacting with each other and with a renewable resource. This type of dynamics was previously found in [Belotelov, Konovalenko, 2016]. The model population consists of a set of individuals. Each individual is characterized by its mass, which is identified with energy. It describes in detail the dynamics of the energy balance of the individual. The habitat of the simulated population is a rectangular area where the resource grows evenly (grass).

    Various computer experiments carried out with the model under different parameter values and initial conditions are described. The main purpose of these computational experiments was to study the group (herd) dynamics of individuals. It was found that in a fairly wide range of parameter values and with the introduction of spatial inhomogeneities of the area, the group type of behavior is preserved. The values of the model population parameters under which the regime of spatial oscillations of the population occurs were found numerically. Namely, in the model population periodically group (herd) behavior of animals is replaced by a uniform distribution over space, which after a certain number of bars again becomes a group. Numerical experiments on the preliminary analysis of the factors influencing the period of these solutions are carried out. It turned out that the leading parameters affecting the frequency and amplitude, as well as the number of groups are the mobility of individuals and the rate of recovery of the resource. Numerical experiments are carried out to study the influence of parameters determining the nonlocal interaction between individuals of the population on the group behavior. It was found that the modes of group behavior persist for a long time with the exclusion of fertility factors of individuals. It is confirmed that the nonlocality of interaction between individuals is leading in the formation of group behavior.

    Views (last year): 32.
  9. Kashchenko N.M., Ishanov S.A., Matsievsky S.V.
    Simulation equatorial plasma bubbles started from plasma clouds
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 463-476

    Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable.

    A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000–7000 c for the Earth equatorial ionosphere.

    Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere.

    Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.

    Views (last year): 14.
  10. Muratov M.V., Petrov I.B.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"