All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
publication_info">
Introduction to the parallelization of algorithms and programs
Computer Research and Modeling, 2010, v. 2, no. 3, pp. 231-272Views (last year): 53. Citations: 22 (RSCI).Difference of software development for parallel computing technology from sequential programming is dicussed. Arguements for introduction of new phases into technology of software engineering are given. These phases are: decomposition of algorithms, assignment of jobs to performers, conducting and mapping of logical to physical performers. Issues of performance evaluation of algorithms are briefly discussed. Decomposition of algorithms and programs into parts that can be executed in parallel is dicussed.
-
publication_info">
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Views (last year): 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
-
publication_info">
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
publication_info">
Simulation of the gas condensate reservoir depletion
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.
In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.
The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.
Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.
-
publication_info">
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"