Результаты поиска по 'direct algorithm':
Найдено статей: 57
  1. Sviridenko A.B.
    The iterations’ number estimation for strongly polynomial linear programming algorithms
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285

    A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.

    Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.

  2. Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Views (last year): 7. Citations: 1 (RSCI).
  3. Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Quadratic programming
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420

    A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.

    The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.

    To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.

    Views (last year): 32.
  4. Lukashenko V.T., Maksimov F.A.
    Modeling the flight of meteoroid fragments with accounting for rotation
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 593-612

    An algorithm for solving the conjugation of aerodynamic and ballistic problems, which is based on the method of modeling with the help of a grid system, has been complemented by a numerical mechanism that allows to take into account the relative movement and rotation of bodies relative to their centers of mass. For a given configuration of the bodies a problem of flow is solved by relaxation method. After that the state of the system is recalculated after a short amount of time. With the use of iteration it is possible to trace the dynamics of the system over a large period of time. The algorithm is implemented for research of flight of systems of bodies taking into account their relative position and rotation. The algorithm was tested on the problem of flow around a body with segmental-conical form. A good correlation of the results with experimental studies was shown. The algorithm is used to calculate the problem of the supersonic fight of a rotating body. For bodies of rectangular shape, imitating elongated fragments of a meteoroid, it is shown that for elongated bodies the aerodynamically more stable position is flight with a larger area across the direction of flight. This de facto leads to flight of bodies with the greatest possible aerodynamic resistance due to the maximum midship area. The algorithm is used to calculate the flight apart of two identical bodies of a rectangular shape, taking into account their rotation. Rotation leads to the fact that the bodies fly apart not only under the action of the pushing aerodynamic force but also the additional lateral force due to the acquisition of the angle of attack. The velocity of flight apart of two fragments with elongated shape of a meteoric body increases to three times with the account of rotation in comparison with the case, when it is assumed that the bodies do not rotate. The study was carried out in order to evaluate the influence of various factors on the velocity of fragmentation of the meteoric body after destruction in order to construct possible trajectories of fallen on earth meteorites. A developed algorithm for solving the conjugation of aerodynamic and ballistic problems, taking into account the relative movement and rotation of the bodies, can be used to solve technical problems, for example, to study the dynamics of separation of aircraft stages.

    Views (last year): 6.
  5. We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.

  6. Aksenov A.A., Alexandrova N.A., Budnikov A.V., Zhestkov M.N., Sazonova M.L., Kochetkov M.A.
    Simulation of multi-temperature flows turbulent mixing in a T-junctions by the LES approach in FlowVision software package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 827-843

    The paper presents the results of numerical simulation of different-temperature water flows turbulent mixing in a T-junctions in the FlowVision software package. The article describes in detail an experimental stand specially designed to obtain boundary conditions that are simple for most computational fluid dynamics software systems. Values of timeaveraged temperatures and velocities in the control sensors and planes were obtained according to the test results. The article presents the system of partial differential equations used in the calculation describing the process of heat and mass transfer in a liquid using the Smagorinsky turbulence model. Boundary conditions are specified that allow setting the random velocity pulsations at the entrance to the computational domain. Distributions of time-averaged water velocity and temperature in control sections and sensors are obtained. The simulation is performed on various computational grids, for which the axes of the global coordinate system coincide with the directions of hot and cold water flows. The possibility for FlowVision PC to construct a computational grid in the simulation process based on changes in flow parameters is shown. The influence of such an algorithm for constructing a computational grid on the results of calculations is estimated. The results of calculations on a diagonal grid using a beveled scheme are given (the direction of the coordinate lines does not coincide with the direction of the tee pipes). The high efficiency of the beveled scheme is shown when modeling flows whose general direction does not coincide with the faces of the calculated cells. A comparison of simulation results on various computational grids is carried out. The numerical results obtained in the FlowVision PC are compared with experimental data and calculations performed using other computing programs. The results of modeling turbulent mixing of water flow of different temperatures in the FlowVision PC are closer to experimental data in comparison with calculations in CFX ANSYS. It is shown that the application of the LES turbulence model on relatively small computational grids in the FlowVision PC allows obtaining results with an error within 5%.

  7. Ushakov A.O., Gandzha T.V., Dmitriev V.M., Molokov P.B.
    Computer model of a perfect-mixing extraction reactor in the format of the component circuits method with non-uniform vector connections
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 599-614

    The features of the component circuits method (MCC) in modeling chemical-technological systems (CTS) are considered, taking into account its practical significance. The software and algorithmic implementation of which is currently a set of computer modeling programs MARS (Modeling and Automatic Research of Systems). MARS allows the development and analysis of mathematical models with specified experimental parameters. Research and calculations were carried out using a specialized software and hardware complex MARS, which allows the development of mathematical models with specified experimental parameters. In the course of this work, the model of a perfect-mixing reactor was developed in the MARS modeling environment taking into account the physicochemical features of the uranium extraction process in the presence of nitric acid and tributyl phosphate. As results, the curves of changes of the concentration of uranium extracted into the organic phase are presented. The possibility of using MCC for the description and analysis of CTS, including extraction processes, has been confirmed. The use of the obtained results is planned to be used in the development of a virtual laboratory, which will include the main apparatus of the chemical industry, as well as complex technical controlled systems (CTСS) based on them and will allow one to acquire a wide range of professional competencies in working with “digital twins” of real control objects, including gaining initial experience working with the main equipment of the nuclear industry. In addition to the direct applied benefits, it is also assumed that the successful implementation of the domestic complex of computer modeling programs and technologies based on the obtained results will make it possible to find solutions to the problems of organizing national technological sovereignty and import substitution.

  8. Khudhur H.M., Halil I.H.
    Noise removal from images using the proposed three-term conjugate gradient algorithm
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853

    Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).

  9. Vetchanin E.V., Tenenev V.A.
    Motion control simulating in a viscous liquid of a body with variable geometry of weights
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 371-381

    Statement of a problem of management of movement of a body in a viscous liquid is given. Movement bodies it is induced by moving of internal material points. On a basis the numerical decision of the equations of movement of a body and the hydrodynamic equations approximating dependencies for viscous forces are received. With application approximations the problem of optimum control of body movement dares on the set trajectory with application of hybrid genetic algorithm. Possibility of the directed movement of a body under action is established back and forth motion of an internal point. Optimum control movement direction it is carried out by motion of other internal point on circular trajectory with variable speed.

    Views (last year): 2. Citations: 16 (RSCI).
  10. Chernov I.A., Manicheva S.V.
    Adjoint grid parabolic quazilinear boundary-value problems
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 275-291

    In the paper we construct the adjoint problem for the explicit and implicit parabolic quazi-linear grid boundary-value problems with one spatial variable; the coefficients of the problems depend on the solution at the same time and earlier times. Dependence on the history of the solution is via the state vector; its evolution is described by the differential equation. Many models of diffusion mass transport are reduced to such boundary-value problems. Having solutions to the direct and adjoint problems, one can obtain the exact value of the gradient of a functional in the space of parameters the problem also depends on. We present solving algorithms, including the parallel one.

    Views (last year): 1.
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"