All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Struggle against economic corruption in resource allocation
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185Views (last year): 33. Citations: 1 (RSCI).A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.
-
The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722Views (last year): 2.In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.
In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.
Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.
-
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Harvesting impact on population dynamics with age and sex structure: optimal harvesting and the hydra effect
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1107-1130Based on the time-discrete model, we study the effect of selective proportional harvesting on the population dynamics with age and sex structure. When constructing the model, we assume that the population birth rate depends on the ratio of the sexes and the number of formed pairs. The regulation of population growth is carried out by limiting the juvenile’s survival when the survival of immature individuals decreases with an increase in the numbers of sex and age classes. We consider cases where the harvest is carried out only from a younger age class or from a group of mature females or males. We find that the harvesting of males or females at the optimal level is responsible for changing the ratio of females to males (taking into account the average size of the harem). We show that the maximum number of harvested males is achieved either at such a harvest rate when their excess number is withdrawn and the balance of sexes is established or at such an optimal catch quota at which the sex ratio is shifted towards breeding females. Optimal female harvesting, in which the highest number of them are taken, either maintains a preexisting shortage of adult males or leads to an excess of males or the fixing of a sex balance. We find that, depending on the population parameters for all considered harvesting strategies, the hydra effect can observe, i. e., the equilibrium size of the exploited sex and age-specific group (after reproduction) can increase with the growth of harvesting intensity. The selective harvesting, due to which the hydra effect occurs, simultaneously leads to an increase remaining population size and the number of harvested individuals. At the same time, the size of the exploited group after reproduction can become even more than without exploitation. Equilibrium harvesting with the optimal harvest rate that maximizes yield leads to a population size decrease. The effect of hydra is at lower values of the catch quota than the optimal harvest rate. At the same time, the consequence of the hydra effect may be a higher abundance of the age-sex group under optimal exploitation compared to the level observed in the absence of harvesting.
-
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Views (last year): 3. Citations: 1 (RSCI).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
A discreet ‘power–society–economics’ model based on cellular automaton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572Views (last year): 8. Citations: 1 (RSCI).In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.
-
Model for operational optimal control of financial recourses distribution in a company
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358Views (last year): 33.A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.
The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.
Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.
-
Computer model development for a verified computational experiment to restore the parameters of bodies with arbitrary shape and dielectric properties
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1555-1571The creation of a virtual laboratory stand that allows one to obtain reliable characteristics that can be proven as actual, taking into account errors and noises (which is the main distinguishing feature of a computational experiment from model studies) is one of the main problems of this work. It considers the following task: there is a rectangular waveguide in the single operating mode, on the wide wall of which a technological hole is cut, through which a sample for research is placed into the cavity of the transmission line. The recovery algorithm is as follows: the laboratory measures the network parameters (S11 and/or S21) in the transmission line with the sample. In the computer model of the laboratory stand, the sample geometry is reconstructed and an iterative process of optimization (or sweeping) of the electrophysical parameters is started, the mask of this process is the experimental data, and the stop criterion is the interpretive estimate of proximity (or residual). It is important to note that the developed computer model, along with its apparent simplicity, is initially ill-conditioned. To set up a computational experiment, the Comsol modeling environment is used. The results of the computational experiment with a good degree of accuracy coincided with the results of laboratory studies. Thus, experimental verification was carried out for several significant components, both the computer model in particular and the algorithm for restoring the target parameters in general. It is important to note that the computer model developed and described in this work may be effectively used for a computational experiment to restore the full dielectric parameters of a complex geometry target. Weak bianisotropy effects can also be detected, including chirality, gyrotropy, and material nonreciprocity. The resulting model is, by definition, incomplete, but its completeness is the highest of the considered options, while at the same time, the resulting model is well conditioned. Particular attention in this work is paid to the modeling of a coaxial-waveguide transition, it is shown that the use of a discrete-element approach is preferable to the direct modeling of the geometry of a microwave device.
-
Numerical modeling of ecologic situation of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 151-168Views (last year): 4. Citations: 31 (RSCI).The article covered results of three-dimensional modeling of ecologic situation of shallow water on the example of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system of Southern Federal University. Discrete analogs of convective and diffusive transfer operators of the fourth order of accuracy in the case of partial occupancy of cells were constructed and studied. The developed scheme of the high (fourth) order of accuracy were used for solving problems of aquatic ecology and modeling spatial distribution of polluting nutrients, which caused growth of phytoplankton, many species of which are toxic and harmful. The use of schemes of the high order of accuracy are improved the quality of input data and decreased the error in solutions of model tasks of aquatic ecology. Numerical experiments were conducted for the problem of transportation of substances on the basis of the schemes of the second and fourth orders of accuracy. They’re showed that the accuracy was increased in 48.7 times for diffusion-convection problem. The mathematical algorithm was proposed and numerically implemented, which designed to restore the bottom topography of shallow water on the basis of hydrographic data (water depth at individual points or contour level). The map of bottom relief of the Azov Sea was generated with using this algorithm. It’s used to build fields of currents calculated on the basis of hydrodynamic model. The fields of water flow currents were used as input data of the aquatic ecology models. The library of double-layered iterative methods was developed for solving of nine-diagonal difference equations. It occurs in discretization of model tasks of challenges of pollutants concentration, plankton and fish on multiprocessor computer system. It improved the precision of the calculated data and gave the possibility to obtain operational forecasts of changes in ecologic situation of shallow water in short time intervals.
-
Estimation of models parameters for time series with Markov switching regimes
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918Views (last year): 36.The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"