Результаты поиска по 'employment':
Найдено статей: 27
  1. Khavinson M.J., Kulakov M.P.
    Mathematical modeling of the population dynamics of different age-group workers in the regional economy
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454

    The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.

    Views (last year): 4. Citations: 15 (RSCI).
  2. Prokoptsev N.G., Alekseenko A.E., Kholodov Y.A.
    Traffic flow speed prediction on transportation graph with convolutional neural networks
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367

    The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.

    Views (last year): 36.
  3. Suganya G., Senthamarai R.
    Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106

    Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.

  4. Orlov M.A., Kamzolova S.G., Ryasik A.A., Zykova E.A., Sorokin A.A.
    Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878

    The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.

    Views (last year): 18.
  5. Lukianchenko P.P., Danilov A.M., Bugaev A.S., Gorbunov E.I., Pashkov R.A., Ilyina P.G., Gadzhimirzayev Sh.M.
    Approach to Estimating the Dynamics of the Industry Consolidation Level
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 129-140

    In this article we propose a new approach to the analysis of econometric industry parameters for the industry consolidation level. The research is based on the simple industry automatic control model. The state of the industry is measured by quarterly obtained econometric parameters from each industry’s company provided by the tax control regulator. An approach to analysis of the industry, which does not provide for tracking the economy of each company, but explores the parameters of the set of all companies as a whole, is proposed. Quarterly obtained econometric parameters from each industry’s company are Income, Quantity of employers, Taxes, and Income from Software Licenses. The ABC analysis method was modified by ABCD analysis (D — companies with zero-level impact to industry metrics) and used to make the results obtained for different indicators comparable. Pareto charts were formed for the set of econometric indicators.

    To estimate the industry monopolization, the Herfindahl – Hirschman index was calculated for the most sensitive companies metrics. Using the HHI approach, it was proved that COVID-19 does not lead to changes in the monopolization of the Russian IT industry.

    As the most visually obvious approach to the industry visualization, scattering diagrams in combination with the Pareto graph colors were proposed. The affect of the accreditation procedure is clearly observed by scattering diagram in combination with red/black dots for accredited and nonaccredited companies respectively.

    The last reported result is the proposal to use the Licenses End-to-End Product Identification as the market structure control instrument. It is the basis to avoid the multiple accounting of the licenses reselling within the chain of software distribution.

    The results of research could be the basis for future IT industry analysis and simulation on the agent based approach.

  6. Nedbailo Y.A., Surchenko A.V., Bychkov I.N.
    Reducing miss rate in a non-inclusive cache with inclusive directory of a chip multiprocessor
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 639-656

    Although the era of exponential performance growth in computer chips has ended, processor core numbers have reached 16 or more even in general-purpose desktop CPUs. As DRAM throughput is unable to keep pace with this computing power growth, CPU designers need to find ways of lowering memory traffic per instruction. The straightforward way to do this is to reduce the miss rate of the last-level cache. Assuming “non-inclusive cache, inclusive directory” (NCID) scheme already implemented, three ways of reducing the cache miss rate further were studied.

    The first is to achieve more uniform usage of cache banks and sets by employing hash-based interleaving and indexing. In the experiments in SPEC CPU2017 refrate tests, even the simplest XOR-based hash functions demonstrated a performance increase of 3.2%, 9.1%, and 8.2% for CPU configurations with 16, 32, and 64 cores and last-level cache banks, comparable to the results of more complex matrix-, division- and CRC-based functions.

    The second optimisation is aimed at reducing replication at different cache levels by means of automatically switching to the exclusive scheme when it appears optimal. A known scheme of this type, FLEXclusion, was modified for use in NCID caches and showed an average performance gain of 3.8%, 5.4 %, and 7.9% for 16-, 32-, and 64-core configurations.

    The third optimisation is to increase the effective cache capacity using compression. The compression rate of the inexpensive and fast BDI*-HL (Base-Delta-Immediate Modified, Half-Line) algorithm, designed for NCID, was measured, and the respective increase in cache capacity yielded roughly 1% of the average performance increase.

    All three optimisations can be combined and demonstrated a performance gain of 7.7%, 16% and 19% for CPU configurations with 16, 32, and 64 cores and banks, respectively.

  7. Belyaev A.V.
    Stochastic transitions from order to chaos in a metapopulation model with migration
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973

    This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.

  8. Budyanski A.V., Tsybulin V.G.
    Modeling of spatialtemporal migration for closely related species
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 477-488

    We consider a model of populations that are closely related and share a common areal. System of nonlinear parabolic equations is formulated that incorporates nonlinear diffusion and migration flows induced by nonuniform densities of population and carrying capacity. We employ the method of lines and study the impact of migration on scenarios of local competition and coexistence of species. Conditions on system parameters are determined when a nontrivial family of steady states is formed.

    Views (last year): 6. Citations: 9 (RSCI).
  9. Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

  10. Pekhterev A.A., Domaschenko D.V., Guseva I.A.
    Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978

    The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.

Pages: previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"