Результаты поиска по 'lattice model':
Найдено статей: 24
  1. Ardaniani V.G., Markova T.V., Aksenov A.A., Kochetkov M.A., Volkov V.Y., Golibrodo L.A., Krutikov A.A., Kudryavtsev O.V.
    CFD-modeling of heat exchange beams with eutectic lead-bismuth alloy
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 861-875

    Nowadays, active development of 4th generation nuclear reactors with liquid metal coolants takes place. Therefore, simulation of their elements and units in 3D modelling software are relevant. The thermal-hydraulic analysis of reactor units with liquid metal coolant is recognized as one of the most important directions of the complex of interconnected tasks on reactor unit parameters justification. The complexity of getting necessary information about operating conditions of reactor equipment with liquid-metal coolant on the base of experimental investigations requires the involvement of numerical simulation. The domestic CFD code FlowVision has been used as a research tool. FlowVision software has a certificate of the Scientific and Engineering Centre for Nuclear and Radiation Safety for the nuclear reactor safety simulations. Previously it has been proved that this simulation code had been successfully used for modelling processes in nuclear reactors with sodium coolant. Since at the moment the nuclear industry considers plants with lead-bismuth coolant as promising reactors, it is necessary to justify the FlowVision code suitability also for modeling the flow of such coolant, which is the goal of this work. The paper presents the results of lead-bismuth eutectic flow numerical simulation in the heat exchange tube bundle of NPP steam generator. The convergence studies on a grid and step have been carried out, turbulence model has been selected, hydraulic resistance coefficients of lattices have been determined and simulations with and without $k_\theta^{}$-$e_\theta^{}$ model are compared within the framework of fluid dynamics and heat exchange modeling in the heat-exchange tube bundle. According to the results of the study, it was found that the results of the calculation using the $k_\theta^{}$-$e_\theta^{}$ turbulence model are more precisely consistent with the correlations. A cross-verification with STAR-CCM+ software has been performed as an additional verification on the accuracy of the results, the results obtained are within the error limits of the correlations used for comparison.

  2. Vetluzhsky A.Y.
    Analysis of the dispersion characteristics of metallic photonic crystals by the plane-wave expansion method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1059-1068

    A method for studying the dispersion characteristics of photonic crystals — media with a dielectric constant that varies periodically in space — is considered. The method is based on the representation of the wave functions and permittivity of a periodic medium in the form of Fourier series and their subsequent substitution into the wave equation, which leads to the formulation of the dispersion equation. Using the latter, for each value of the wave vector it is possible determined a set of eigen frequencies. Each of eigen frequency forms a separate dispersion curve as a continuous function of the wave number. The Fourier expansion coefficients of the permittivity, which depend on the vectors of the reciprocal lattice of the photonic crystal, are determined on the basis of data on the geometric characteristics of the elements that form the crystal, their electrophysical properties and the density of the crystal. The solution of the dispersion equation found makes it possible to obtain complete information about the number of modes propagating in a periodic structure at different frequencies, and about the possibility of forming band gaps, i.e. frequency ranges within which wave propagation through a photonic crystal is impossible. The focus of this work is on the application of this method to the analysis of the dispersion properties of metallic photonic crystals. The difficulties that arise in this case due to the presence of intrinsic dispersion properties of the metals that form the elements of the crystal are overcome by an analytical description of their permittivity based on the model of free electrons. As a result, a dispersion equation is formulated, the numerical solution of which is easily algorithmized. That makes possible to determine the dispersion characteristics of metallic photonic crystals with arbitrary parameters. Obtained by this method the results of calculation of dispersion diagrams, which characterize two-dimensional metal photonic crystals, are compared with experimental data and numerical results obtained using the method of self-consistent equations. Their good agreement is demonstrated.

  3. Moskalev P.V.
    Percolation modeling of hydraulic hysteresis in a porous media
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558

    In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.

    Views (last year): 3. Citations: 1 (RSCI).
  4. Yankovskaya U.I., Starostenkov M.D., Zakharov P.V.
    Molecular dynamics study of the mechanical properties of a platinum crystal reinforced with carbon nanotube under uniaxial tension
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1069-1080

    This article discusses the mechanical properties of carbon nanotube (CNT)-reinforced platinum under uniaxial tensile loading using the molecular dynamics method. A review of current computational and experimental studies on the use of carbon nanotube-reinforced composites from a structural point of view. However, quantitative and qualitative studies of CNTs to improve the properties of composites are still rare. Composite selection is a promising application for platinum alloys in many cases where they may be subjected to mechanical stress, including in biocompatibility sources. Pt-reinforced with CNTs may have additional possibilities for implantation of the implant and at the same time obtain the required mechanical characteristics.

    The structure of the composite is composed of a Pt crystal with a face-centered cubic lattice with a constant of 3.92 Å and a carbon nanotube. The Pt matrix has the shape of a cube with dimensions of $43.1541 Å \times 43.1541 Å \times 43.1541 Å$. The hole size in the average platinum dimension is the radius of the carbon nanotube of the «zigzag» type (8,0), which is 2.6 Å. A carbon nanotube is placed in a hole with a radius of 4.2 Å. At such parameters, the maximum energy level was mutually observed. The model under consideration is contained in 320 atomic bombs and 5181 atomic platinum. The volume fraction of deaths in the Pt-C composite is 5.8%. At the first stage of the study, the strain rate was analyzed for stress-strain and energy change during uniaxial action on the Pt-C composite.

    Analysis of the strain rate study showed that the consumption yield strength increases with high strain rate, and the elasticity has increased density with decreasing strain rate. This work also increased by 40% for Pt-C, the elasticity of the composite decreased by 42.3%. In general, fracture processes are considered in detail, including plastic deformation on an atomistic scale.

  5. Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  6. Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
  7. Kalmykov L.V., Kalmykov V.L.
    Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293

    Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.

    Views (last year): 16. Citations: 3 (RSCI).
  8. Moskalev P.V.
    The structure of site percolation models on three-dimensional square lattices
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 607-622

    In this paper we consider the structure of site percolation models on three-dimensional square lattices with various shapes of (1,π)-neighborhood. For these models, are proposed iso- and anisotropic modifications of the invasion percolation algorithm with (1,0)- and (1,π)-neighborhoods. All the above algorithms are special cases of the anisotropic invasion percolation algorithm on the n-dimensional lattice with a (1,π)-neighborhood. This algorithm is the basis for the package SPSL, released under GNU GPL-3 using the free programming language R.

    Views (last year): 8. Citations: 5 (RSCI).
  9. Ilyin O.V.
    The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722

    In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.

    In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.

    Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.

    Views (last year): 2.
  10. Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

Pages: previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"