Результаты поиска по 'material':
Найдено статей: 71
  1. Buglak A.A., Pomogaev V.A., Kononov A.I.
    Calculation of absorption spectra of silver-thiolate complexes
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 275-286

    Ligand protected metal nanoclusters (NCs) have gained much attention due to their unique physicochemical properties and potential applications in material science. Noble metal NCs protected with thiolate ligands have been of interest because of their long-term stability. The detailed structures of most of the ligandstabilized metal NCs remain unknown due to the absence of crystal structure data for them. Theoretical calculations using quantum chemistry techniques appear as one of the most promising tools for determining the structure and electronic properties of NCs. That is why finding a cost-effective strategy for calculations is such an important and challenging task. In this work, we compare the performance of different theoretical methods of geometry optimization and absorption spectra calculation for silver-thiolate complexes. We show that second order Moller–Plesset perturbation theory reproduces nicely the geometries obtained at a higher level of theory, in particular, with RI-CC2 method. We compare the absorption spectra of silver-thiolate complexes simulated with different methods: EOM-CCSD, RI-CC2, ADC(2) and TDDFT. We show that the absorption spectra calculated with the ADC(2) method are consistent with the spectra obtained with the EOM-CCSD and RI-CC2 methods. CAM-B3LYP functional fails to reproduce the absorption spectra of the silver-thiolate complexes. However, M062X global hybrid meta-GGA functional seems to be a nice compromise regarding its low computational costs. In our previous study, we have already demonstrated that M062X functional shows good accuracy as compared to ADC(2) ab initio method predicting the excitation spectra of silver nanocluster complexes with nucleobases.

    Views (last year): 14.
  2. Potapov I.I., Silakova Y.G.
    Investigation of the process of growth of the amplitude of bed waves in rivers and channels
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1339-1347

    The work is a theoretical study of the development of bottom instability in rivers and canals. Based on an analytical model of the load of sediment, taking into account the influence of slopes of the bottom surface, bottom pressure and shear stress on the movement of the bottom material and an analytical solution that allows to determine bottom tangential and normal stresses over the periodic bottom, the problem of determining the amplitude growth rate for growing bottom waves is formulated and solved . The obtained solution of the problem allows us to determine the characteristic time of the growth of the bottom wave, the growth rate of the bottom wave and its maximum amplitude, depending on the physical and particle size characteristics of the bottom material and the hydraulic parameters of the water flow. On the example of the development of a periodic sinusoidal bottom wave of low steepness, the verification of the solution obtained for the formulated problem is carried out. The obtained analytical solution to the problem allows us to determine the growth rate of the amplitude of the bottom wave from the current value of its amplitude. Comparison of the obtained solution with experimental data showed their good qualitative and quantitative agreement.

  3. Skaliukh A.S.
    Modeling the response of polycrystalline ferroelectrics to high-intensity electric and mechanical fields
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 93-113

    A mathematical model describing the irreversible processes of polarization and deformation of polycrystalline ferroelectrics in external electric and mechanical fields of high intensity is presented, as a result of which the internal structure changes and the properties of the material change. Irreversible phenomena are modeled in a three-dimensional setting for the case of simultaneous action of an electric field and mechanical stresses. The object of the research is a representative volume in which the residual phenomena in the form of the induced and irreversible parts of the polarization vector and the strain tensor are investigated. The main task of modeling is to construct constitutive relations connecting the polarization vector and strain tensor, on the one hand, and the electric field vector and mechanical stress tensor, on the other hand. A general case is considered when the direction of the electric field may not coincide with any of the main directions of the tensor of mechanical stresses. For reversible components, the constitutive relations are constructed in the form of linear tensor equations, in which the modules of elasticity and dielectric permeability depend on the residual strain, and the piezoelectric modules depend on the residual polarization. The constitutive relations for irreversible parts are constructed in several stages. First, an auxiliary model was constructed for the ideal or unhysteretic case, when all vectors of spontaneous polarization can rotate in the fields of external forces without mutual influence on each other. A numerical method is proposed for calculating the resulting values of the maximum possible polarization and deformation values of an ideal case in the form of surface integrals over the unit sphere with the distribution density obtained from the statistical Boltzmann law. After that the estimates of the energy costs required for breaking down the mechanisms holding the domain walls are made, and the work of external fields in real and ideal cases is calculated. On the basis of this, the energy balance was derived and the constitutive relations for irreversible components in the form of equations in differentials were obtained. A scheme for the numerical solution of these equations has been developed to determine the current values of the irreversible required characteristics in the given electrical and mechanical fields. For cyclic loads, dielectric, deformation and piezoelectric hysteresis curves are plotted.

    The developed model can be implanted into a finite element complex for calculating inhomogeneous residual polarization and deformation fields with subsequent determination of the physical modules of inhomogeneously polarized ceramics as a locally anisotropic body.

  4. Alekseenko A.E., Kazennov A.M.
    CUDA and OpenCL implementations of Conway’s Game of Life cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 323-326

    In this article the experience of reading “CUDA and OpenCL programming” course during high perfomance computing summer school MIPT-2010 is analyzed. Content of lectures and practical tasks, as well as manner of presenting of the material are regarded. Performance issues of different algorithms implemented by students at practical training session are dicussed.

    Views (last year): 9. Citations: 3 (RSCI).
  5. Bessudnova N.O., Tsiporukha Y.E., Shlyapnikova O.A.
    Numerical simulation of adhesive technology application in tooth root canal on restoration properties
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1069-1079

    The aim of the present study is to show how engineering approaches and ideas work in clinical restorative dentistry, in particular, how they affect the restoration design and durability of restored endodontically treated teeth. For these purposes a 3D-computational model of a first incisor including the elements of hard tooth tissues, periodontal ligament, surrounding bone structures and restoration itself has been constructed and numerically simulated for a variety of restoration designs under normal chewing loadings. It has been researched the effect of different adhesive technologies in root canal on the functional characteristics of a restored tooth. The 3D model designed could be applied for preclinical diagnostics to determine the areas of possible fractures of a restored tooth and prognosticate its longevity.

    Views (last year): 3.
  6. Korolev S.A., Maykov D.V.
    Solution of the problem of optimal control of the process of methanogenesis based on the Pontryagin maximum principle
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 357-367

    The paper presents a mathematical model that describes the process of obtaining biogas from livestock waste. This model describes the processes occurring in a biogas plant for mesophilic and thermophilic media, as well as for continuous and periodic modes of substrate inflow. The values of the coefficients of this model found earlier for the periodic mode, obtained by solving the problem of model identification from experimental data using a genetic algorithm, are given.

    For the model of methanogenesis, an optimal control problem is formulated in the form of a Lagrange problem, whose criterial functionality is the output of biogas over a certain period of time. The controlling parameter of the task is the rate of substrate entry into the biogas plant. An algorithm for solving this problem is proposed, based on the numerical implementation of the Pontryagin maximum principle. In this case, a hybrid genetic algorithm with an additional search in the vicinity of the best solution using the method of conjugate gradients was used as an optimization method. This numerical method for solving an optimal control problem is universal and applicable to a wide class of mathematical models.

    In the course of the study, various modes of submission of the substrate to the digesters, temperature environments and types of raw materials were analyzed. It is shown that the rate of biogas production in the continuous feed mode is 1.4–1.9 times higher in the mesophilic medium (1.9–3.2 in the thermophilic medium) than in the periodic mode over the period of complete fermentation, which is associated with a higher feed rate of the substrate and a greater concentration of nutrients in the substrate. However, the yield of biogas during the period of complete fermentation with a periodic mode is twice as high as the output over the period of a complete change of the substrate in the methane tank at a continuous mode, which means incomplete processing of the substrate in the second case. The rate of biogas formation for a thermophilic medium in continuous mode and the optimal rate of supply of raw materials is three times higher than for a mesophilic medium. Comparison of biogas output for various types of raw materials shows that the highest biogas output is observed for waste poultry farms, the least — for cattle farms waste, which is associated with the nutrient content in a unit of substrate of each type.

  7. Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Nyshtaev D.V., Kudryavtseva Y.A.
    Choice of design of transcatheter aortic valve prosthesis frame based on finite element analysis
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 909-922

    This article presents an analysis of the impact of the transcatheter prosthesis frame design features on the results of its implantation in the aortic root model. In this paper we analyzed the various approaches to the design of such structures, as well as modifications in order to improve their functional characteristics during the implantation. As a general method for obtaining the results of interaction of the objects was used finite element method with nonlinear materials description and analysis of the main parameters: the stress-strain state, radial and friction forces.

    Views (last year): 3. Citations: 1 (RSCI).
  8. Lyubimov A.K., Kozhanov D.A.
    Modeling the structural element of flexible woven composites under static tension using the method of finite element in ANSYS
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 113-120

    The article gives the example of finite-element modeling of the structural element is a flexible woven composites. The reinforcing cloth is a plain weave of threads of assembled harness. Threads are represented by elastic material. The matrix of the material is a soft polymer with the possibility of irreversible deformations. Taken into account the possibility of the occurrence of damage in the structure of the material under high loads. Built detailed diagram of deformation under uniaxial tension. The accuracy of the model is conrmed by in situ experiments.

    Views (last year): 1. Citations: 7 (RSCI).
  9. Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  10. Grachev V.A., Nayshtut Yu.S.
    Relaxation oscillations and buckling of thin shells
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 807-820

    The paper reviews possibilities to predict buckling of thin cylindrical shells with non-destructive techniques during operation. It studies shallow shells made of high strength materials. Such structures are known for surface displacements exceeding the thickness of the elements. In the explored shells relaxation oscillations of significant amplitude can be generated even under relatively low internal stresses. The problem of the cylindrical shell oscillation is mechanically and mathematically modeled in a simplified form by conversion into an ordinary differential equation. To create the model, the researches of many authors were used who studied the geometry of the surface formed after buckling (postbuckling behavior). The nonlinear ordinary differential equation for the oscillating shell matches the well-known Duffing equation. It is important that there is a small parameter before the second time derivative in the Duffing equation. The latter circumstance enables making a detailed analysis of the obtained equation and describing the physical phenomena — relaxation oscillations — that are unique to thin high-strength shells.

    It is shown that harmonic oscillations of the shell around the equilibrium position and stable relaxation oscillations are defined by the bifurcation point of the solutions to the Duffing equation. This is the first point in the Feigenbaum sequence to convert the stable periodic motions into dynamic chaos. The amplitude and the period of relaxation oscillations are calculated based on the physical properties and the level of internal stresses within the shell. Two cases of loading are reviewed: compression along generating elements and external pressure.

    It is highlighted that if external forces vary in time according to the harmonic law, the periodic oscillation of the shell (nonlinear resonance) is a combination of slow and stick-slip movements. Since the amplitude and the frequency of the oscillations are known, this fact enables proposing an experimental facility for prediction of the shell buckling with non-destructive techniques. The following requirement is set as a safety factor: maximum load combinations must not cause displacements exceeding specified limits. Based on the results of the experimental measurements a formula is obtained to estimate safety against buckling (safety factor) of the structure.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"