Результаты поиска по 'model of the function':
Найдено статей: 224
  1. varshavsky L.Eug.
    Study of the dynamics of the structure of oligopolistic markets with non-market opposition parties
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 219-233

    The article examines the impact of non-market actions of participants in oligopolistic markets on the market structure. The following actions of one of the market participants aimed at increasing its market share are analyzed: 1) price manipulation; 2) blocking investments of stronger oligopolists; 3) destruction of produced products and capacities of competitors. Linear dynamic games with a quadratic criterion are used to model the strategies of oligopolists. The expediency of their use is due to the possibility of both an adequate description of the evolution of markets and the implementation of two mutually complementary approaches to determining the strategies of oligopolists: 1) based on the representation of models in the state space and the solution of generalized Riccati equations; 2) based on the application of operational calculus methods (in the frequency domain) which owns the visibility necessary for economic analysis.

    The article shows the equivalence of approaches to solving the problem with maximin criteria of oligopolists in the state space and in the frequency domain. The results of calculations are considered in relation to a duopoly, with indicators close to one of the duopolies in the microelectronic industry of the world. The second duopolist is less effective from the standpoint of costs, though more mobile. Its goal is to increase its market share by implementing the non-market methods listed above.

    Calculations carried out with help of the game model, made it possible to construct dependencies that characterize the relationship between the relative increase in production volumes over a 25-year period of weak and strong duopolists under price manipulation. Constructed dependencies show that an increase in the price for the accepted linear demand function leads to a very small increase in the production of a strong duopolist, but, simultaneously, to a significant increase in this indicator for a weak one.

    Calculations carried out with use of the other variants of the model, show that blocking investments, as well as destroying the products of a strong duopolist, leads to more significant increase in the production of marketable products for a weak duopolist than to a decrease in this indicator for a strong one.

  2. Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

  3. Guleenkova V.D., Ershova D.M., Tsaturyan A.K., Koubassova N.A.
    Molecular dynamics study of the effect of mutations in the tropomyosin molecule on the properties of thin filaments of the heart muscle
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 513-524

    Muscle contraction is controlled by Ca2+ ions via regulatory proteins, troponin and tropomyosin, associated with thin actin filaments in sarcomeres. Depending on the Ca2+ concentration, the thin filament rearranges so that tropomyosin moves along its surface, opening or closing access to actin for the motor domains of myosin molecules, and causing contraction or relaxation, respectively. Numerous point amino acid substitutions in tropomyosin are known, leading to genetic pathologies — myo- and cardiomyopathies caused by changes in the structural and functional properties of the thin filament. The results of molecular dynamics modeling of a fragment of a thin filament of cardiac muscle sarcomeres formed by fibrillar actin and wildtype tropomyosin or with amino acid substitutions: the double stabilizing substitution D137L/G126R and the cardiomyopathic substitution S215L are presented. For numerical calculations, we used a new model of a thin filament fragment containing 26 actin monomers and 4 tropomyosin dimers, with a refined structure of the region of overlap of neighboring tropomyosin molecules in each of the two tropomyosin strands. The simulation results showed that tropomyosin significantly increases the bending stiffness of the thin filament, as previously found experimentally. The double stabilizing replacement D137L/G126R leads to a further increase in this rigidity, and the replacement S215L, on the contrary, leads to its decrease, which also corresponds to experimental data. At the same time, these substitutions have different effects on the angular mobility of the actin helix and only slightly modulate the angular mobility of tropomyosin cables relative to the actin helix and the population of hydrogen bonds between negatively charged tropomyosin residues and positively charged actin residues. The results of the verification of the new model demonstrate that its quality is sufficient for the numerical study of the effect of single amino acid substitutions on the structure and dynamics of thin filaments and study the effects leading to dysregulation of muscle contraction. This model can be used as a useful tool for elucidating the molecular mechanisms of some genetic diseases and assessing the pathogenicity of newly discovered genetic variants.

  4. Poddubny V.V., Romanovich O.V.
    Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450

    The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.

    Views (last year): 1. Citations: 3 (RSCI).
  5. Zhmurov A.A., Alekseenko A.E., Barsegov V.A., Kononova O.G., Kholodov Y.A.
    Phase transition from α-helices to β-sheets in supercoils of fibrillar proteins
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 705-725

    The transition from α-helices to β-strands under external mechanical force in fibrin molecule containing coiled-coils is studied and free energy landscape is resolved. The detailed theoretical modeling of each stage of coiled-coils fragment pulling process was performed. The plots of force (F) as a function of molecule expansion (X) for two symmetrical fibrin coiled-coils (each ∼17 nm in length) show three distinct modes of mechanical behaviour: (1) linear (elastic) mode when coiled-coils behave like entropic springs (F<100−125 pN and X<7−8 nm), (2) viscous (plastic) mode when molecule resistance force does not increase with increase in elongation length (F≈150 pN and X≈10−35 nm) and (3) nonlinear mode (F>175−200 pN and X>40−50 nm). In linear mode the coiled-coils unwind at 2π radian angle, but no structural transition occurs. Viscous mode is characterized by the phase transition from the triple α-spirals to three-stranded parallel β-sheet. The critical tension of α-helices is 0.25 nm per turn, and the characteristic energy change is equal to 4.9 kcal/mol. Changes in internal energy Δu, entropy Δs and force capacity cf per one helical turn for phase transition were also computed. The observed dynamic behavior of α-helices and phase transition from α-helices to β-sheets under tension might represent a universal mechanism of regulation of fibrillar protein structures subject to mechanical stresses due to biological forces.

    Views (last year): 6. Citations: 1 (RSCI).
  6. Govorkov D.A., Novikov V.P., Solovyev I.G., Tsibulsky V.R.
    Interval analysis of vegetation cover dynamics
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1191-1205

    In the development of the previously obtained result on modeling the dynamics of vegetation cover, due to variations in the temperature background, a new scheme for the interval analysis of the dynamics of floristic images of formations is presented in the case when the parameter of the response rate of the model of the dynamics of each counting plant species is set by the interval of scatter of its possible values. The detailed description of the functional parameters of macromodels of biodiversity, desired in fundamental research, taking into account the essential reasons for the observed evolutionary processes, may turn out to be a problematic task. The use of more reliable interval estimates of the variability of functional parameters “bypasses” the problem of uncertainty in the primary assessment of the evolution of the phyto-resource potential of the developed controlled territories. The solutions obtained preserve not only a qualitative picture of the dynamics of species diversity, but also give a rigorous, within the framework of the initial assumptions, a quantitative assessment of the degree of presence of each plant species. The practical significance of two-sided estimation schemes based on the construction of equations for the upper and lower boundaries of the trajectories of the scatter of solutions depends on the conditions and measure of proportional correspondence of the intervals of scatter of the initial parameters with the intervals of scatter of solutions. For dynamic systems, the desired proportionality is not always ensured. The given examples demonstrate the acceptable accuracy of interval estimation of evolutionary processes. It is important to note that the constructions of the estimating equations generate vanishing intervals of scatter of solutions for quasi-constant temperature perturbations of the system. In other words, the trajectories of stationary temperature states of the vegetation cover are not roughened by the proposed interval estimation scheme. The rigor of the result of interval estimation of the species composition of the vegetation cover of formations can become a determining factor when choosing a method in the problems of analyzing the dynamics of species diversity and the plant potential of territorial systems of resource-ecological monitoring. The possibilities of the proposed approach are illustrated by geoinformation images of the computational analysis of the dynamics of the vegetation cover of the Yamal Peninsula and by the graphs of the retro-perspective analysis of the floristic variability of the formations of the landscapelithological group “Upper” based on the data of the summer temperature background of the Salehard weather station from 2010 to 1935. The developed indicators of floristic variability and the given graphs characterize the dynamics of species diversity, both on average and individually in the form of intervals of possible states for each species of plant.

  7. Makhov S.A.
    Forecasting demographic and macroeconomic indicators in a distributed global model
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779

    The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.

  8. Zhdanova O.L., Neverova G.P., Frisman E.Y.
    Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554

    We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.

    The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.

  9. Titlyanova A.A.
    Schools on mathematical biology 1973–1992
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422

    This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.

    Views (last year): 2.
  10. Andreeva A.A., Anand M., Lobanov A.I., Nikolaev A.V., Panteleev M.A.
    Using extended ODE systems to investigate the mathematical model of the blood coagulation
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951

    Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.

    As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.

    Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"