All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Mathematical modeling of the age groups of employed peoples by the example of the southern regions of the Russian Far East
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 787-801Views (last year): 4. Citations: 3 (RSCI).The article focuses on a nonlinear mathematical model that describes the interaction of the different age groups of the employed population. The interactions are treated by analogy with population relationship (competition, discrimination, assistance, oppression, etc). Under interaction of peoples we mean the generalized social and economic mechanisms that cause related changes in the number of employees of different age groups. Three age groups of the employed population are considered. It is young specialists (15–29 years), workers with experience (30–49 years), the employees of pre-retirement and retirement age (50 and older). The estimation of model’s parameters for the southern regions of the Far Eastern Federal District (FEFD) is executed by statistical data. Analysis of model scenarios allows us to conclude the observed number fluctuations of the different ages employees on the background of a stable total employed population may be a consequence of complex interactions between these groups of peoples. Computational experiments with the obtained values of the parameters allowed us to calculate the rate of decline and the aging of the working population and to determine the nature of the interaction between the age groups of employees that are not directly as reflected in the statistics. It was found that in FEFD the employed of 50 years and older are discriminated against by the young workers under 29, employed up to 29 and 30–49 years are in a partnership. It is shown in most developed regions (Primorsky and Khabarovsk Krai) there is “uniform” competition among different age groups of the employed population. For Primorsky Krai we were able to identify the mixing effect dynamics. It is a typical situation for systems in a state of structural adjustment. This effect is reflected in the fact the long cycles of employed population form with a significant decrease in migration inflows of employees 30–49 years. Besides, the change of migration is accompanied by a change of interaction type — from employment discrimination by the oldest of middle generation to discrimination by the middle of older generation. In less developed regions (Amur, Magadan and Jewish Autonomous Regions) there are lower values of migration balance of almost all age groups and discrimination by young workers up 29 years of other age groups and employment discrimination 30–49 years of the older generation.
-
Languages in China provinces: quantitative estimation with incomplete data
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 707-716Views (last year): 3.This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.
-
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Assessment of the elite–people interaction in post-soviet countries using the Bayesian approach
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1233-1247A previously developed model that describes the dynamics of social tension in a society divided into two groups: the elite and the people was considered. This model took into account the impact of economic situation changes and the elite–people interaction. The model has been modified by including in the equation describing the tension of the people, a term that takes into account the adaptation of the people to the current situation.
The model coefficients estimation is an important task, the solution of which allows obtaining information about the nature of the interaction between elite and people. We believe that the solution of the system of model equations with optimal coefficients is closest to the values of the indicator characterizing social tension. We used the normalized level of homicide rate as an indicator of social tension.
The model contains seven coefficients. Two coefficients characterizing the influence of economic situation changes on elite and people are taken equal to each other and the same for all countries. We obtained their estimations using a simplified model that takes into account only the change in the economic situation and allows an analytical solution.
The Bayesian approach was used to estimate the remaining five coefficients of model for post-Soviet countries. The prior probability densities of the four coefficients for all countries under consideration were taken to be the same. The prior probability density of fifth coefficient was considered to depend on the regime of government (authoritarian or «transitional»). We assumed that the calculated tension matches with the corresponding indicator of tension in cases where the difference between them does not exceed 5%.
The calculations showed that for the post-Soviet countries, a good coincidence was obtained between the calculated values of the people tension and the normalized level of homicide rate. The coincidence is satisfactory only on average.
The following main results was obtained at the work: under the influence of some «significant» events in 40% of post-Soviet countries, there was a rapid change in the nature of interaction between the elite and the people; regional feature have some influence on the elite–people interaction; the type of government does not significantly affect the elite–people interaction; the method for assessing the stability of the country by the value of the model coefficients is proposed.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
A discreet ‘power–society–economics’ model based on cellular automaton
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 561-572Views (last year): 8. Citations: 1 (RSCI).In this paper we consider a new modification of the discrete version of Mikhailov’s ‘power–society’ model, previously proposed by the author. This modification includes social-economical dynamics and corruption of the system similarly to continuous ‘power–society–economics–corruption’ model but is based on a stochastic cellular automaton describing the dynamics of power distribution in a hierarchy. This new version is founded on previously proposed ‘power–society’ system modeling cellular automaton, its cell state space enriched with variables corresponding to population, economic production, production assets volume and corruption level. The social-economical structure of the model is inherited from Solow and deterministic continuous ‘power–society–economics–corruption’ models. At the same time the new model is flexible, allowing to consider regional differentiation in all social and economical dynamics parameters, to use various production and demography models and to account for goods transit between the regions. A simulation system was built, including three power hierarchy levels, five regions and 100 municipalities. and a number of numerical experiments were carried out. This research yielded results showing specific changes of the dynamics in power distribution in hierarchy when corruption level increases. While corruption is zero (similar to the previous version of the model) the power distribution in hierarchy asymptotically tends to one of stationary states. If the corruption level increases substantially, volume of power in the system is subjected to irregular oscillations, and only much later tends to a stationary value. The meaning of these results can be interpreted as the fact that the stability of power hierarchy decreases when corruption level goes up.
-
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
The mathematical optimization model based on several quality criteria
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 489-502Views (last year): 7.An effective regional policy in order to stabilize production is impossible without an analysis of the dynamics of economic processes taking place. This article focuses on developing a mathematical model reflecting the interaction of several economic agents with regard to their interests. Developing such a model and its study can be considered as an important step in solving theoretical and practical problems of managing growth.
-
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Views (last year): 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"