Результаты поиска по 'regional systems':
Найдено статей: 60
  1. Kashchenko N.M., Ishanov S.A., Zinin L.V., Matsievsky S.V.
    A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58

    The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.

    One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.

    Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.

    The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.

    At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.

    The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.

    The results of the numerical experiments allow to draw the following conclusions.

    1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.

    2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.

    3. For the smooth initial profile the best results were shown by the Koren limiter.

    4. The smooth F limiter showed the results similar to Koren limiter.

    5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.

    6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.

    7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.

  2. Samsonov K.Y., Kabanov D.K., Nazarov V.N., Ekomasov E.G.
    Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868

    In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.

  3. Kurushina S.E., Shapovalova E.A.
    Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

    We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

    We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

    In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

    Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

    Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

    Views (last year): 7.
  4. Zinchenko D.A., Nikonov E.G., Zinchenko A.I.
    A Monte-Carlo study of the inner tracking system main characteristics for multi purpose particle detector MPD
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 87-94

    At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons). One of the experimental facilitues MPD (MultiPurpose Detector) was designed to investigate nucleus-nucleus, protonnucleus and proton-proton interactions. The existing plans of future MPD upgrade consider a possibility to install an inner tracker made of the new generation silicon pixel sensors. It is expected that such a detector will considerably enhance the research capability of the experiment both for nucleus-nucleus interactions (due to a high spatial resolution near the collision region) and proton-proton ones (due to a fast detector response).

    This paper presents main characteristics of such a tracker, obtained using a Monte-Carlo simulation of the detector for proton-proton collisions. In particular, the detector ability to reconstruct decay vertices of short-lived particles and perform a selection of rare events of such decays from much more frequent “common” interactions are evaluated. Also, the problem of a separation of multiple collisions during the high luminosity accelerator running and the task of detector triggering on rare events are addressed. The results obtained can be used to justify the necessity to build such a detector and to develop a high-level trigger system, possibly based on machine learning techniques.

    Views (last year): 28.
  5. Govorukhin V.N., Filimonova A.M.
    Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426

    In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.

    The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.

    Views (last year): 16.
  6. Andruschenko V.A., Moiseeva D.S., Motorin A.A., Stupitsky E.L.
    Modeling the physical processes of a powerful nuclear explosion on an asteroid
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 861-877

    As part of the paper, a physical and theoretical analysis of the impact processes of various factors of a highaltitude and high-energy nuclear explosion on the asteroid in extra-atmospheric conditions of open space is done. It is shown that, in accordance with the energy and permeability of the plasma of explosion products, X-ray and gamma-neutron radiation, a layered structure with a different energy density depending on angular coordinates is formed on the surface of the asteroid. The temporal patterns of the energy transformation for each layer is clarified and the roles of various photo- and collision processes are determined. The effect of a high-speed plasma flow is erosive in nature, and the plasma pulse is transmitted to the asteroid. The paper presents that in a thin layer of x-ray absorption, the asteroid substance is heated to high temperatures and as a result of its expansion, a recoil impulse is formed, which is not decisive due to the small mass of the expanding high-temperature plasma. Calculations shows that the main impulse received by an asteroid is associated with the entrainment of a heated layer of a substance formed by a neutron flux (7.5 E 1014 g E cm/s). It is shown that an asteroid with a radius of ~100 m acquires a velocity of . 100 cm/s. The calculations were performed taking into account the explosion energy spent on the destruction of the amorphous structure of the asteroid material (~1 eV/atom = 3.8 E 1010 erg/g) and ionization in the region of the high-temperature layer. Based on a similar analysis, an approximation is obtained for estimating the average size of fragments in the event of the possible destruction of the asteroid by shock waves generated inside it under the influence of pressure impulses. A physical experiment was conducted in laboratory conditions, simulating the fragmentation of a stone asteroid and confirming the validity of the obtained dependence on the selected values of certain parameters. As a result of numerical studies of the effects of the explosion, carried out at different distances from the surface of the asteroid, it is shown that taking into account the real geometry of the spallation layer gives the optimal height for the formation of the maximum asteroid momentum by a factor of 1.5 greater than similar estimates according to the simplified model. A two-stage concept of the impact of nuclear explosions on an asteroid using radar guidance tools is proposed. The paper analyzes the possible impact of the emerging ionization interference on the radar tracking of the movement of large fragments of the asteroid in the space-time evolution of all elements of the studied dynamic system.

  7. Sosin A.V., Sidorenko D.A., Utkin P.S.
    Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540

    The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.

    The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.

  8. Denisenko V.V., Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V.
    Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753

    The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.

  9. Khavinson M.J., Kulakov M.P., Frisman Y.Y.
    Mathematical modeling of the age groups of employed peoples by the example of the southern regions of the Russian Far East
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 787-801

    The article focuses on a nonlinear mathematical model that describes the interaction of the different age groups of the employed population. The interactions are treated by analogy with population relationship (competition, discrimination, assistance, oppression, etc). Under interaction of peoples we mean the generalized social and economic mechanisms that cause related changes in the number of employees of different age groups. Three age groups of the employed population are considered. It is young specialists (15–29 years), workers with experience (30–49 years), the employees of pre-retirement and retirement age (50 and older). The estimation of model’s parameters for the southern regions of the Far Eastern Federal District (FEFD) is executed by statistical data. Analysis of model scenarios allows us to conclude the observed number fluctuations of the different ages employees on the background of a stable total employed population may be a consequence of complex interactions between these groups of peoples. Computational experiments with the obtained values of the parameters allowed us to calculate the rate of decline and the aging of the working population and to determine the nature of the interaction between the age groups of employees that are not directly as reflected in the statistics. It was found that in FEFD the employed of 50 years and older are discriminated against by the young workers under 29, employed up to 29 and 30–49 years are in a partnership. It is shown in most developed regions (Primorsky and Khabarovsk Krai) there is “uniform” competition among different age groups of the employed population. For Primorsky Krai we were able to identify the mixing effect dynamics. It is a typical situation for systems in a state of structural adjustment. This effect is reflected in the fact the long cycles of employed population form with a significant decrease in migration inflows of employees 30–49 years. Besides, the change of migration is accompanied by a change of interaction type — from employment discrimination by the oldest of middle generation to discrimination by the middle of older generation. In less developed regions (Amur, Magadan and Jewish Autonomous Regions) there are lower values of migration balance of almost all age groups and discrimination by young workers up 29 years of other age groups and employment discrimination 30–49 years of the older generation.

    Views (last year): 4. Citations: 3 (RSCI).
  10. Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"