Результаты поиска по 'regression':
Найдено статей: 29
  1. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195

    Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.

  2. Kirilyuk I.L.
    Models of production functions for the Russian economy
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 293-312

    A comparative analysis of the applicability of several variants of the production function models for the analysis of modern Russian economy is presented in a paper. Through regression analysis, the effect of such factors as the oil prices on the world market, the innovation, the hypothesis of constant returns to factors of production is estimated. Calculations were made both for the economy as a whole and for separate industries. It is shown that the models of the economy of Russia as a whole and some of its industries in relation to real data have significant increasing returns to labor. Limits of applicability for the models are discussed.

    Views (last year): 21. Citations: 65 (RSCI).
  3. Belyaeva A.V.
    Spatial models in mass appraisal of real estate
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 639-650

    The author has analyzed main approaches to the mass appraisal of real property (Russian and foreign), pros and cons are pointed out. An approach based on spatial regression models which shows results better than conventional regression models and applicable to Russian real estate market is presented in the article.

    Views (last year): 3. Citations: 3 (RSCI).
  4. Kirilyuk I.L., Sen'ko O.V.
    Assessing the validity of clustering of panel data by Monte Carlo methods (using as example the data of the Russian regional economy)
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1501-1513

    The paper considers a method for studying panel data based on the use of agglomerative hierarchical clustering — grouping objects based on the similarities and differences in their features into a hierarchy of clusters nested into each other. We used 2 alternative methods for calculating Euclidean distances between objects — the distance between the values averaged over observation interval, and the distance using data for all considered years. Three alternative methods for calculating the distances between clusters were compared. In the first case, the distance between the nearest elements from two clusters is considered to be distance between these clusters, in the second — the average over pairs of elements, in the third — the distance between the most distant elements. The efficiency of using two clustering quality indices, the Dunn and Silhouette index, was studied to select the optimal number of clusters and evaluate the statistical significance of the obtained solutions. The method of assessing statistical reliability of cluster structure consisted in comparing the quality of clustering on a real sample with the quality of clustering on artificially generated samples of panel data with the same number of objects, features and lengths of time series. Generation was made from a fixed probability distribution. At the same time, simulation methods imitating Gaussian white noise and random walk were used. Calculations with the Silhouette index showed that a random walk is characterized not only by spurious regression, but also by “spurious clustering”. Clustering was considered reliable for a given number of selected clusters if the index value on the real sample turned out to be greater than the value of the 95% quantile for artificial data. A set of time series of indicators characterizing production in the regions of the Russian Federation was used as a sample of real data. For these data only Silhouette shows reliable clustering at the level p < 0.05. Calculations also showed that index values for real data are generally closer to values for random walks than for white noise, but it have significant differences from both. Since three-dimensional feature space is used, the quality of clustering was also evaluated visually. Visually, one can distinguish clusters of points located close to each other, also distinguished as clusters by the applied hierarchical clustering algorithm.

  5. Makhov S.A.
    Forecasting demographic and macroeconomic indicators in a distributed global model
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779

    The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.

  6. The article discusses the problem of the influence of the research goals on the structure of the multivariate model of regression analysis (in particular, on the implementation of the procedure for reducing the dimension of the model). It is shown how bringing the specification of the multiple regression model in line with the research objectives affects the choice of modeling methods. Two schemes for constructing a model are compared: the first does not allow taking into account the typology of primary predictors and the nature of their influence on the performance characteristics, the second scheme implies a stage of preliminary division of the initial predictors into groups, in accordance with the objectives of the study. Using the example of solving the problem of analyzing the causes of burnout of creative workers, the importance of the stage of qualitative analysis and systematization of a priori selected factors is shown, which is implemented not by computing means, but by attracting the knowledge and experience of specialists in the studied subject area. The presented example of the implementation of the approach to determining the specification of the regression model combines formalized mathematical and statistical procedures and the preceding stage of the classification of primary factors. The presence of this stage makes it possible to explain the scheme of managing (corrective) actions (softening the leadership style and increasing approval lead to a decrease in the manifestations of anxiety and stress, which, in turn, reduces the severity of the emotional exhaustion of the team members). Preclassification also allows avoiding the combination in one main component of controlled and uncontrolled, regulatory and controlled feature factors, which could worsen the interpretability of the synthesized predictors. On the example of a specific problem, it is shown that the selection of factors-regressors is a process that requires an individual solution. In the case under consideration, the following were consistently used: systematization of features, correlation analysis, principal component analysis, regression analysis. The first three methods made it possible to significantly reduce the dimension of the problem, which did not affect the achievement of the goal for which this task was posed: significant measures of controlling influence on the team were shown. allowing to reduce the degree of emotional burnout of its participants.

  7. Timiryanova V.M., Lakman I.A., Larkin M.M.
    Retail forecasting on high-frequency depersonalized data
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734

    Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.

  8. Aronov I.Z., Maksimova O.V.
    Theoretical modeling consensus building in the work of standardization technical committees in coalitions based on regular Markov chains
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1247-1256

    Often decisions in social groups are made by consensus. This applies, for example, to the examination in the technical committee for standardization (TC) before the approval of the national standard by Rosstandart. The standard is approved if and only if the secured consensus in the TC. The same approach to standards development was adopted in almost all countries and at the regional and international level. Previously published works of authors dedicated to the construction of a mathematical model of time to reach consensus in technical committees for standardization in terms of variation in the number of TC members and their level of authoritarianism. The present study is a continuation of these works for the case of the formation of coalitions that are often formed during the consideration of the draft standard to the TC. In the article the mathematical model is constructed to ensure consensus on the work of technical standardization committees in terms of coalitions. In the framework of the model it is shown that in the presence of coalitions consensus is not achievable. However, the coalition, as a rule, are overcome during the negotiation process, otherwise the number of the adopted standards would be extremely small. This paper analyzes the factors that influence the bridging coalitions: the value of the assignment and an index of the effect of the coalition. On the basis of statistical modelling of regular Markov chains is investigated their effects on the time to ensure consensus in the technical Committee. It is proved that the time to reach consensus significantly depends on the value of unilateral concessions coalition and weakly depends on the size of coalitions. Built regression model of dependence of the average number of approvals from the value of the assignment. It was revealed that even a small concession leads to the onset of consensus, increasing the size of the assignment results (with other factors being equal) to a sharp decline in time before the consensus. It is shown that the assignment of a larger coalition against small coalitions takes on average more time before consensus. The result has practical value for all organizational structures, where the emergence of coalitions entails the inability of decision-making in the framework of consensus and requires the consideration of various methods for reaching a consensus decision.

  9. Shatrov A.V., Okhapkin V.P.
    Optimal control of bank investment as a factorof economic stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967

    This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.

    Views (last year): 5.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"