Результаты поиска по 'water':
Найдено статей: 68
  1. Mikheev A.V., Kazakov B.N.
    A New Method For Point Estimating Parameters Of Simple Regression
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 57-77

    A new method is described for finding parameters of univariate regression model: the greatest cosine method. Implementation of the method involves division of regression model parameters into two groups. The first group of parameters responsible for the angle between the experimental data vector and the regression model vector are defined by the maximum of the cosine of the angle between these vectors. The second group includes the scale factor. It is determined by means of “straightening” the relationship between the experimental data vector and the regression model vector. The interrelation of the greatest cosine method with the method of least squares is examined. Efficiency of the method is illustrated by examples.

    Views (last year): 2. Citations: 4 (RSCI).
  2. Dyadkin A.A., Pavlov A.O., Simakova T.V., Chetkin S.V.
    Analysis of the possibility of investigation of hydrodynamic responses and landing dynamics of space module impacting water with FlowVision CFD software
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 47-55

    The results of verification carried out for investigations of hydrodynamic effect on reentry conicalsegmental space vehicle are presented in the paper. The program complex Flow Vision is used for this analysis. The purpose of the study is verification of using Flow Vision program complex for problem solving mentioned above on the base of comparison between calculated and experimental data, obtained on the Apollo landing models and new development reentry spacecraft of manned transporting spaceship designed by RSC Energia. The comparison was carried out through the data of pressure values on spacecraft model surfaces during its water landing and inertia center motion parameters.

    The results of study show good agreement between experimental and calculated data of force effects on vehicle construction during water landing and its motion parameters in the water medium. Computer simulation sufficiently well reproduces influence of initial velocities & water entry angles variations on water landing process.

    Using of computer simulation provides simultaneous acquisition of all data information needed for investigation of water landing peculiarities during construction design, notably, hydrodynamic effects for structural strength calculations, parameters and dynamics of center mass motion and vehicle revolution around center mass for estimation water landing conditions, as well as vehicle stability after landing.

    Obtained results confirm suitability of using Flow Vision program complex for water landing vehicle investigations and investigations of influence of different landing regimes through wide initial condition change range, that permits considerably decrease extent of expensive experimental tests and realize landing conditions which are sufficiently complicated for realizing in model physical experiments.

    Views (last year): 10.
  3. Devaev V.M., Makhanko A.A.
    Development of the remotely piloted agricultural aircraft (RPAA) control system on the basis of the airplane MV-500
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 315-323

    The article presents the intermediate results of the development of a control system for a remotely piloted agricultural aircraft (RPAA). The concept of using an automated complex for performing aerochemical work (ACW) designed for processing fields, water areas, forests with the purpose of protection from pests of plants, fertilization is developed. The basic component of the complex is a manned agricultural aircraft MV-500 developed by LLC “Firm “MVEN” (Kazan). The use of the aircraft in unmanned mode will provide an increase in the productivity of the aircraft, will increase the payload.

    The article defines the composition of the complex for automation of ACW: aircraft, ground control center, onboard equipment for automated control of the aircraft and the formation of a map of the heights of the section being processed, and the satellite precise positioning system necessary to automate the control of the aircraft. The aircraft is equipped with an automated control system that provides remote control of take-off and landing and automatic control of the flight trajectory at extremely low altitude when performing ACW and performing spatial turns at the boundaries of the treated areas. It is proposed to take off, landing, dropping an aircraft into the ACW exercise area by means of a pilot operator from a ground control station. The ground control point should provide reception and display on the operator's screen of flight information and several types from the aircraft. The operator can control alternately several aircraft during these phases of flight with the help of ground control authorities. In the future, it is planned to automate these stages of flight, leaving behind the pilot-operator control functions and remote control capabilities in special cases. For the navigation of the aircraft, when performing ACW on board, RTK (Real Time Kinematic) equipment is installed, providing a measurement with centimeter accuracy of coordinates and aircraft heights relative to the base station installed in the ground control station. Before the implementation of ACW, a three-dimensional digital map of the processed area is built by adding existing cadastral maps with measurements of the elevations of the section carried out with the help of on-board radio and optical altimeters of the same aircraft.

    To date, the following system components have been manufactured and tested: a remotely controlled model of the MV-500 aircraft at a scale of 1:5, a satellite positioning system; system for obtaining images and telemetry information from the board model; autopilot; methods of obtaining three-dimensional digital maps of sections and planning flight trajectories for ACW.

    Views (last year): 20.
  4. Миньков Л.Л., Дик И.Г.
    Моделирование течения в гидроциклоне с дополнительным инжектором
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 63-76

    Статья представляет собой пример компьютерного моделирования в области инженерной механики. Численным методом находятся поля скорости в гидроциклоне, которые недоступны прямому измерению. Рассматривается численное моделирование трехмерной гидродинамики на основе k-ε RNG модели турбулентности в гидроциклоне со встроенным инжектором, содержащим 5 тангенциально направленных сопла. Показано, что направление движения инжектируемой жидкости зависит от расхода жидкости через инжектор. Расчеты показывают в соответствии с экспериментами, что зависимость сплит-параметра от расхода инжектируемой жидкости имеет немонотонный характер, связанный с отношением мощности основного потока и инжектируемой жидкости.

    Views (last year): 2. Citations: 5 (RSCI).
  5. Volokhova A.V., Zemlyanay E.V., Lakhno V.D., Amirkhanov I.V., Puzynin I.V., Puzynina T.P.
    Numerical investigation of photoexcited polaron states in water
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261

    A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.

    Citations: 1 (RSCI).
  6. Ougolnitsky G.A., Usov A.B., Ryzhkin A.I.
    The motivation method in the Germeyer’s games at modeling three-level control system of the ship’s ballast water
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 535-542

    The static three-level game-theoretic model of three-level control system of the ship’s water ballast is built. The methods of hierarchical control in view of requirements of keeping the system in the given state are used. A comparison of the results of study of the model in terms of $\Gamma_1$ and $\Gamma_2$ Germeyer’s games is conducted. Numerical calculations for some typical cases are given.

    Citations: 5 (RSCI).
  7. Dähmlow P., Luengviria C., Müller S.C.
    Electric field effects in chemical patterns
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718

    Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.

    Views (last year): 8.
  8. Nikonov E.G., Pavlus M., Popovičová M.
    2D microscopic and macroscopic simulation of water and porous material interaction
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86

    In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.

    Views (last year): 10.
  9. Kilin A.A., Klenov A.I., Tenenev V.A.
    Controlling the movement of the body using internal masses in a viscous liquid
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460

    This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.

    A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.

    The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.

    Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.

    In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.

    Views (last year): 21. Citations: 2 (RSCI).
  10. Stognii P.V., Petrov I.B.
    Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82

    The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.

    In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"