Most viewed papers

Most cited papers (RSCI)
Найдено статей: 666
  1. Tumanyan A.G., Bartsev S.I.
    Simple behavioral model of imprint formation
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 793-802

    Formation of adequate behavioral patterns in condition of the unknown environment carried out through exploratory behavior. At the same time the rapid formation of an acceptable pattern is more preferable than a long elaboration perfect pattern through repeat play learning situation. In extreme situations, phenomenon of imprinting is observed — instant imprinting of behavior pattern, which ensure the survival of individuals. In this paper we propose a hypothesis and imprint model when trained on a single successful pattern of virtual robot's neural network demonstrates the effective functioning. Realism of the model is estimated by checking the stability of playback behavior pattern to perturbations situation imprint run.

    Views (last year): 5. Citations: 2 (RSCI).
  2. Abgaryan K.K., Zhuravlev A.A., Zagordan N.L., Reviznikov D.L.
    Discrete-element simulation of a spherical projectile penetration into a massive obstacle
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 71-79

    А discrete element model is applied to the problem of a spherical projectile penetration into a massive obstacle. According to the model both indenter and obstacle are described by a set of densely packed particles. To model the interaction between the particles the two-parameter Lennard–Jones potential is used. Computer implementation of the model has been carried out using parallelism on GPUs, which resulted in high spatial — temporal resolution. Based on the comparison of the results of numerical simulation with experimental data the binding energy has been identified as a function of the dynamic hardness of materials. It is shown that the use of this approach allows to accurately describe the penetration process in the range of projectile velocities 500–2500 m/c.

    Views (last year): 5. Citations: 5 (RSCI).
  3. Gibanov N.S., Sheremet M.A.
    Effect of shape and sizes of a local heat source on convective heat transfer in a square cavity
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 271-280

    Numerical analysis of the effects of the local heat source shape on transient natural convection in a square enclosure has been carried out. The local heat source has rectangular, triangular and trapezoidal shape. The boundary value problem formulated in the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation has been solved by means of finite difference method. Distributions of streamlines and isotherms and time dependences for the average Nusselt number along the heat source surface in a wide range of governing parameters have been obtained.

    Views (last year): 5. Citations: 7 (RSCI).
  4. Aronov I.Z., Maksimova O.V., Zazhigalkin A.V.
    Investigation of time to reach consensus on the work of technical committees on standardization based on regular Markov chains
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 941-950

    In this paper construct the mathematical model for consensus in technical committees for standardization (TC), based on the consensus model proposed DeGroot. The basic problems of achieving consensus in the development of consensus standards in terms of the proposed model are discussed. The results of statistical modeling characterizing the dependence of time to reach consensus on the number of members of the TC and their authoritarianism are presented. It has been shown that increasing the number of TC experts and authoritarianism negative impact on the time to reach a consensus and increase fragmentation of the TC.

    Views (last year): 5. Citations: 8 (RSCI).
  5. Popov V.Y., Khlystov A.N., Bondin A.V.
    Atomic visualization diamond cutting
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 137-149

    This work is devoted to creation of static atomic model of two surfaces in contact at electric diamond grinding: single-points diamond and material grinded of them. At the heart of the work there are issues of computer visualization of these surfaces at the molecular level, since traditional mathematical description does not possess sufficient visualization to demonstrate some aspects of the atomic tribology of metal cutting to simultaneously occurring the different, by their physical nature, processes. And in the electric diamond grinding blends effect of several processes simultaneously: mechanical, electrical and electrochemical. So the modeling technique proposed by authors is still the only way to see what is happening at the atomic level, cutting material of single-point diamond.

    Views (last year): 5. Citations: 33 (RSCI).
  6. Breev A.I., Shapovalov A.V., Kozlov A.V.
    Integration the relativistic wave equations in Bianchi IX cosmology model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443

    We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.

    Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.

    The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.

    Views (last year): 5.
  7. This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.

    Views (last year): 5.
  8. Ivanov S.D.
    Web-based interactive registry of the geosensors
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 621-632

    Selection and correct applying of the geosensor — the instrument of mineral geothermobarometry is challenging because of the wide variety of existing geosensors on the one hand and the availability of specific requirements for their use on the other. In this paper, organization of the geosensors within the computer system called interactive registry was proposed for reducing the labor intensity of the geosensors usage and providing information support for them. The article provides a formal description of the thermodynamic geosensor, as a function of the minerals composition and independent parameters, as well as the basic steps of pressure and temperature estimation which are common for all geosensors: conversion to the formula units, calculation of the additional parameters and the calculation of the required values. Existing collections of geosensors made as standalone applications, or as spreadsheets was examined for advantages and disadvantages of these approaches. Additional information necessary to use the geosensor was described: paragenesis, accuracy and range of parameter values, reference and others. Implementation of the geosensors registry as the webbased application which uses wiki technology was proposed. Usage of the wiki technology allows to effectively organize not so well formalized additional information about the geosensor and it’s algorithm which had written in a programming language into a single information system. For information organization links, namespaces and wiki markup was used. The article discusses the implementation of the applications on the top of DokuWiki system with specially designed RESTful server, allowing users to apply the geosensors from the registry to their own data. Programming language R uses as a geosensors description language. RServe server uses for calculations. The unittest for each geosensor allows to check the correctness of it’s implementation. The user interface of the application was developed as DokuWiki plug-in. The example of usage was given. In the article conclusion, the questions of the application security, performance and scaling was discussed.

    Views (last year): 5.
  9. Matjushev T.V., Dvornikov M.V.
    The analysis of respiratory reactions of the person in the conditions of the changed gas environment on mathematical model
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 281-296

    The aim of the work was to study and develop methods of forecasting the dynamics of the human respiratory reactions, based on mathematical modeling. To achieve this goal have been set and solved the following tasks: developed and justified the overall structure and formalized description of the model Respiro-reflex system; built and implemented the algorithm in software models of gas exchange of the body; computational experiments and checking the adequacy of the model-based Lite-ture data and our own experimental studies.

    In this embodiment, a new comprehensive model entered partial model modified version of physicochemical properties and blood acid-base balance. In developing the model as the basis of a formalized description was based on the concept of separation of physiologically-fi system of regulation on active and passive subsystems regulation. Development of the model was carried out in stages. Integrated model of gas exchange consisted of the following special models: basic biophysical models of gas exchange system; model physicochemical properties and blood acid-base balance; passive mechanisms of gas exchange model developed on the basis of mass balance equations Grodinza F.; chemical regulation model developed on the basis of a multifactor model D. Gray.

    For a software implementation of the model, calculations were made in MatLab programming environment. To solve the equations of the method of Runge–Kutta–Fehlberga. It is assumed that the model will be presented in the form of a computer research program, which allows implements vat various hypotheses about the mechanism of the observed processes. Calculate the expected value of the basic indicators of gas exchange under giperkap Britain and hypoxia. The results of calculations as the nature of, and quantity is good enough co-agree with the data obtained in the studies on the testers. The audit on Adek-vatnost confirmed that the error calculation is within error of copper-to-biological experiments. The model can be used in the theoretical prediction of the dynamics of the respiratory reactions of the human body in a changed atmosphere.

    Views (last year): 5.
  10. Orel V.R., Tambovtseva R.V., Firsova E.A.
    Effects of the heart contractility and its vascular load on the heart rate in athlets
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 323-329

    Heart rate (HR) is the most affordable indicator for measuring. In order to control the individual response to physical exercises of different load types heart rate is measured when the athletes perform different types of muscular work (strength machines, various types of training and competitive exercises). The magnitude of heart rate and its dynamics during muscular work and recovery can be objectively judged on the functional status of the cardiovascular system of an athlete, the level of its individual physical performance, as well as an adaptive response to a particular exercise. However, the heart rate is not an independent determinant of the physical condition of an athlete. HR size is formed by the interaction of the basic physiological mechanisms underlying cardiac hemodynamic ejection mode. Heart rate depends on one hand, on contractility of the heart, the venous return, the volumes of the atria and ventricles of the heart and from vascular heart load, the main components of which are elastic and peripheral resistance of the arterial system on the other hand. The values of arterial system vascular resistances depend on the power of muscular work and its duration. HR sensitivity to changes in heart load and vascular contraction was determined in athletes by pair regression analysis simultaneously recorded heart rate data, and peripheral $(R)$ and elastic $(E_a)$ resistance (heart vascular load), and the power $(W)$ of heartbeats (cardiac contractility). The coefficients of sensitivity and pair correlation between heart rate indicators and vascular load and contractility of left ventricle of the heart were determined in athletes at rest and during the muscular work on the cycle ergometer. It is shown that increase in both ergometer power load and heart rate is accompanied by the increase of correlation coefficients and coefficients of the heart rate sensitivity to $R$, $E_a$ and $W$.

    Views (last year): 5. Citations: 1 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"