All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Математическое моделирование неньютоновского потока крови в дуге аорты
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 259-269Целью проведенного исследования была разработка математической модели пульсирующего течения крови по участку аорты, включающему восходящий отдел, дугу аорты с ее ответвлениями и верхнюю часть нисходящего отдела. Поскольку при прохождении пульсовой волны деформации этой наиболее твердой части аорты малы, то при построении механической модели ее стенки считались абсолютно твердыми. В статье приводится описание внутренней структуры крови и ряда внутриструктурных эффектов. Этот анализ показывает, что кровь, которая по существу является суспензией, можно рассматривать только как неньютоновскую жидкость. Кроме того, кровь можно считать жидкостью только в кровеносных сосудах, диаметр которых намного больше характерного размера клеток крови и их агрегатных образований. В качестве неньютоновской жидкости была выбрана вязкая жидкость со степенным законом связи напряжения со скоростью деформации. Этот закон позволяет описывать поведение не только жидкостей, но и суспензий. При постановке граничного условия на входе в аорту, отражающего пульсирующий характер течения крови, было решено не ограничиваться заданием совокупного потока крови, который не дает представления о пространственном распределении скорости по поперечному сечению. В связи с этим было предложено моделировать огибающую поверхность этого пространственного распределения частью параболоида вращения с фиксированным радиусом основания и высотой, которая меняется во времени от нуля до максимального значения скорости. Для граничного условия на стенке сосуда предлагается использовать условие полупроскальзывания. Это связано с тем, что клетки крови, в силу своих электрохимических свойств, не прилипают к внутреннему слою сосуда. На внешних концах аорты и ее ответвлений задавалась величина давления. Для выполнения вычислений была построена геометрическая модель рассматриваемой части аорты с ответвлениями, на которую была нанесена тетраэдальная сетка с общим числом элементов 9810. Вычисления производились методом конечных элементов с шагом по времени 0.01 с с использованием пакета ABAQUS. В результате было получено распределение скоростей и давления на каждом шаге по времени. В областях ветвления сосудов было обнаружено вре́менное наличие вихрей и обратных течений. Они зарождались через 0.47 с от начала пульсового цикла и исчезали спустя 0.14 с.
Ключевые слова: математическое моделирование, течение крови, дуга аорты, распределение скорости и напряжения.
Mathematical modelling of the non-Newtonian blood flow in the aortic arc
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269Views (last year): 13.The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.
-
Гибридные модели в биомедицинских приложениях
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.
Hybrid models in biomedical applications
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309Views (last year): 25.The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.
-
Исследование механических свойств иммуноглобулинсвязывающих доменов белков L и G методом молекулярной динамики
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 73-81Механическое разворачивание под действием внешних сил двух похожих по пространственной структуре, но отличающихся по аминокислотной последовательности иммуноглобулинсвязывающих доменов белков L и G исследуется методом молекулярной динамики с использованием явной модели растворителя. Рассчитаны механические характеристики этих белков. Показано, что на пути механического разворачивания обоих белков появляются промежуточные состояния. Проведенные расчеты выявили три существенно различающихся пути механического разворачивания белков L и G.
Ключевые слова: молекулярная динамика, механическое разворачивание, контакты между элементами вторичной структуры.
Investigation of the mechanical properties of immunoglobulinbinding domains of proteins L and G using the molecular dynamics simulations
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 73-81Citations: 1 (RSCI).Mechanical unfolding of two identical in structure but differ in their amino acid sequences immunoglobulinbinding domains of proteins L and G under the action of external forces have been investigating using the method of molecular dynamics with explicit model of solvent. Mechanical characteristics of these proteins have been calculated. It has been shown that in the way of the mechanical unfolding of both proteins appear intermediate states. Calculations revealed three significantly different ways of mechanical unfolding of proteins L and G.
-
Релаксационные колебания и устойчивость тонких оболочек
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.
Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.
Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.
Ключевые слова: упругие оболочки, потеря устойчивости, релаксационные колебания, осциллятор Дуффинга, коэффициент безопасности, экспериментальный прогноз потери устойчивости.
Relaxation oscillations and buckling of thin shells
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 807-820The paper reviews possibilities to predict buckling of thin cylindrical shells with non-destructive techniques during operation. It studies shallow shells made of high strength materials. Such structures are known for surface displacements exceeding the thickness of the elements. In the explored shells relaxation oscillations of significant amplitude can be generated even under relatively low internal stresses. The problem of the cylindrical shell oscillation is mechanically and mathematically modeled in a simplified form by conversion into an ordinary differential equation. To create the model, the researches of many authors were used who studied the geometry of the surface formed after buckling (postbuckling behavior). The nonlinear ordinary differential equation for the oscillating shell matches the well-known Duffing equation. It is important that there is a small parameter before the second time derivative in the Duffing equation. The latter circumstance enables making a detailed analysis of the obtained equation and describing the physical phenomena — relaxation oscillations — that are unique to thin high-strength shells.
It is shown that harmonic oscillations of the shell around the equilibrium position and stable relaxation oscillations are defined by the bifurcation point of the solutions to the Duffing equation. This is the first point in the Feigenbaum sequence to convert the stable periodic motions into dynamic chaos. The amplitude and the period of relaxation oscillations are calculated based on the physical properties and the level of internal stresses within the shell. Two cases of loading are reviewed: compression along generating elements and external pressure.
It is highlighted that if external forces vary in time according to the harmonic law, the periodic oscillation of the shell (nonlinear resonance) is a combination of slow and stick-slip movements. Since the amplitude and the frequency of the oscillations are known, this fact enables proposing an experimental facility for prediction of the shell buckling with non-destructive techniques. The following requirement is set as a safety factor: maximum load combinations must not cause displacements exceeding specified limits. Based on the results of the experimental measurements a formula is obtained to estimate safety against buckling (safety factor) of the structure.
-
Калибровка эластостатической модели манипулятора с использованием планирования эксперимента на основе методов искусственного интеллекта
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1535-1553В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.
Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.
Ключевые слова: моделирование жесткости, эластостатическая калибровка, индустриальный робот, планирование эксперимента.
Calibration of an elastostatic manipulator model using AI-based design of experiment
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.
The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.
-
Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.
Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.
В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.
Methodology of aircraft icing calculation in a wide range of climate and speed parameters. Applicability within the NLG-25 airworthiness standards
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 957-978Certifying a transport airplane for the flights under icing conditions in Russia was carried out within the framework of the requirements of Annex С to the AP-25 Aviation Rules. In force since 2023 to replace AP-25 the new Russian certification document “Airworthiness Standards” (NLG-25) proposes the introduction of Appendix O. A feature of Appendix O is the need to carry out calculations in conditions of high liquid water content and with large water drops (500 microns or more). With such parameters of the dispersed flow, such physical processes as the disruption and splashing of a water film when large drops enter it become decisive. The flow of a dispersed medium under such conditions is essentially polydisperse. This paper describes the modifications of the IceVision technique implemented on the basis of the FlowVision software package for the ice accretion calculations within the framework of Appendix O.
The main difference between the IceVision method and the known approaches is the use of the Volume of fluid (VOF) technology to the shape of ice changes tracking. The external flow around the aircraft is calculated simultaneously with the growth of ice and its heating. Ice is explicitly incorporated in the computational domain; the heat transfer equation is solved in it. Unlike the Lagrangian approaches, the Euler computational grid is not completely rebuilt in the IceVision technique: only the cells containing the contact surface are changed.
The IceVision 2.0 version accounts for stripping the film, as well as bouncing and splashing of falling drops at the surfaces of the aircraft and ice. The diameter of secondary droplets is calculated using known empirical correlations. The speed of the water film flow over the surface is determined taking into account the action of aerodynamic forces, gravity, hydrostatic pressure gradient and surface tension force. The result of taking into account surface tension is the effect of contraction of the film, which leads to the formation of water flows in the form of rivulets and ice deposits in the form of comb-like growths. An energy balance relation is fulfilled on the ice surface that takes into account the energy of falling drops, heat exchange between ice and air, the heat of crystallization, evaporation, sublimation and condensation. The paper presents the results of solving benchmark and model problems, demonstrating the effectiveness of the IceVision technique and the reliability of the obtained results.
-
Синтез АТФ F1-АТФазой в стохастической модели
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 217-223Данная работа является продолжением цикла работ [1-4], посвященных построению математической модели вращающегося молекулярного мотора F1-АТФазы. В данной работе в рамках представленной ранее модели рассматривается синтез АТФ при вращении ротора молекулярного мотора под действием внешней силы.
Synthesis of ATP by F1-ATPase in stochastic model
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 217-223Views (last year): 2. Citations: 1 (RSCI).The paper continues our series of papers [1-4] devoted to the development of mathematical model on rotation of F1-AТPase molecular motor. Here it has been considered the synthesis of ATP induced by external force applied to the rotor.
-
Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
-
Программный комплекс для численного моделирования движения систем многих тел
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 161-174В настоящей работе решается задача численного моделирования движения механических систем, состоящих из твердых тел с произвольными массово-инерционными характеристиками. Предполагается, что рассматриваемые системы являются пространственными и могут содержать замкнутые кинематические цепи. Движение системы происходит под действием внешних и внутренних сил достаточно произвольного вида.
Моделирование движения механической системы производится полностью автоматически при помощи вычислительного алгоритма, состоящего из трех основных этапов. На первом этапе на основе задаваемых пользователем начальных данных выполняется построение графа механической системы, представляющего ее иерархическую структуру. На втором этапе происходит вывод дифференциально-алгебраических уравнений движения системы. Для вывода уравнений движения используется так называемый метод шарнирных координат. Отличительной чертой данного метода является сравнительно небольшое количество получаемых уравнений движения, что позволяет повысить производительность вычислений. На третьем этапе выполняются численное интегрирование уравнений движения и вывод результатов моделирования.
Указанный алгоритм реализован в виде программного комплекса, содержащего систему символьной математики, библиотеку графов, механический решатель, библиотеку численных методов и пользовательский интерфейс.
Ключевые слова: компьютерное моделирование, виртуальное прототипирование, цифровые двойники, механика систем многих тел, метод шарнирных координат.
Software complex for numerical modeling of multibody system dynamics
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.
The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.
The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




