All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Оценивание параметров моделей временных рядов с марковскими переключениями режимов
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.
Ключевые слова: оценивание параметров, модели регрессии, модели с марковскими переключениями, функция правдоподобия, метод максимума правдоподобия, дисперсия шума, отношение сигнала к шуму.
Estimation of models parameters for time series with Markov switching regimes
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918Views (last year): 36.The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.
-
Компьютерное моделирование динамики валового регионального продукта: сравнительный анализ нейросетевых моделей
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1219-1236Анализ экономических показателей региона играет важную роль в управлении и планировании развития, при этом валовой региональный продукт (ВРП) является одним из ключевых индикаторов экономической деятельности. Применение искусственного интеллекта, в том числе нейросетевых технологий, позволяет значительно повысить точность и надежность прогнозов экономических процессов. В данном исследовании сравниваются три модели нейросетевых алгоритмов для прогнозирования ВРП одного из типичных регионов РФ — Удмуртской Республики — на основе временных рядов за период с 2000 по 2023 год. В качестве моделей выбраны нейронная сеть с алгоритмом летучей мыши (BA-LSTM), модель нейронной сети обратного распространения ошибки, оптимизированная с помощью генетического алгоритма (GA-BPNN), и нейросетевая модель Элмана, оптимизированная алгоритмом роя частиц (PSO-Elman). В ходе исследования были выполнены такие этапы нейросетевого моделирования, как подготовка исходных данных, обучение моделей и их сравнительный анализ по показателям точности и качества прогнозов. Такой подход позволяет оценить преимущества и недостатки каждой модели в контексте прогнозирования ВРП, а также определить наиболее перспективные направления для дальнейших исследований. Использование современных нейросетевых методов открывает новые возможности для автоматизации анализа региональной экономики и повышения качества прогнозных оценок, что особенно актуально при ограниченных данных и для оперативного принятия решений. В исследовании в качестве входных данных для прогнозирования ВРП используются такие факторы, как величина производственного капитала, среднегодовая численность трудовых ресурсов, доля продукции высокотехнологичных и наукоемких отраслей в ВРП, а также показатель, учитывающий инфляцию. Высокая точность прогнозов, достигнутая в результате включения этих факторов в нейросетевые модели, подтверждает наличие сильной связи между этими факторами и ВРП. Результаты исследования показали высокую точность нейросетевой модели BA-LSTM на валидационной выборке: коэффициент детерминации составил 0,82, средняя абсолютная процентная ошибка — 4,19%. Качество и надежность этой модели свидетельствуют о ее способности эффективно предсказы- вать динамику ВРП. В прогнозном периоде до 2030 года в Удмуртской Республике ожидается ежегодное увеличение ВРП +4,6% в текущих ценах или +2,5% в сопоставимых ценах 2023 года. К 2030 году прогнозируется ВРП на уровне 1264,5 млрд руб.
Ключевые слова: валовой региональный продукт (ВРП), нейросетевые модели, нейронная сеть BA-LSTM, нейронная сеть GA-BPNN, нейронная сеть PSO-Elman.
Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.
-
Квазипериодическая двухкомпонентная динамическая модель для синтеза кардиосигнала с использованием временных рядов и метода Рунге–Кутты четвёртого порядка
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 143-154В статье представлена квазипериодическая двухкомпонентная динамическая модель, которая позволяет воспроизводить временные и спектральные характеристики кардиосигнала, в том числе вариабельность сердечного ритма. Описана методика определения морфологии кардиоцикла для синтеза кардиосигнала реалистичной формы. Определен способ описания динамической системы кардиосигнала путем построения трехмерного фазового пространства и уравнений, которые описывают траекторию движения точек в этом пространстве. Представлена методика решения уравнений движения в трехмерном фазовом пространстве динамической системы кардиосигнала с применением метода Рунге–Кутты четвертого порядка. На основе модели разработан алгоритм и программный комплекс, с помощью которого проведен эксперимент по синтезу кардиосигнала и исследована взаимосвязь его диагностических признаков.
Ключевые слова: синтез кардиосигнала, квазипериодическая динамическая модель, алгоритм, трехмерное фазовое пространство, морфология кардиоцикла, вариабельность сердечного ритма, временные ряды, метод Рунге–Кутты четвёртого порядка.
A quasi-periodic two-component dynamical model for cardio-signal synthesis using time-series and the fourth-order Runge–Kutta method
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 143-154Views (last year): 5. Citations: 6 (RSCI).In the article, a quasi-periodic two-component dynamical model with possibility of defining the cardio-cycle morphology, that provides the model with an ability of generating a temporal and a spectral cardiosignal characteristics, including heart rate variability is described. A technique for determining the cardio-cycle morphology to provide realistic cardio-signal form is defined. A method for defining cardio-signal dynamical system by the way of determining a three-dimensional state space and equations which describe a trajectory of point’s motion in this space is presented. A technique for solving equations of motion in the three-dimensional state space of dynamical cardio-signal system using the fourth-order Runge–Kutta method is presented. Based on this model, algorithm and software package are developed. Using software package, a cardio-signal synthesis experiment is conducted and the relationship of cardio-signal diagnostic features is analyzed.
-
Моделирование динамики численности занятого населения в отраслях экономики: агент-ориентированный подход
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 919-937Статья посвящена моделированию динамики численности занятого населения по отраслям экономики как на национальном, так и на региональном уровне. Отсутствие целевого распределения работников в рыночной экономике требует исследования системных процессов на рынке труда, приводящих к различной динамике численности занятых в отраслях экономики. В этом случае значимыми становятся личные стратегии выбора трудовой деятельности экономическими агентами. Наличие различных стратегий приводит к появлению страт на рынке труда с динамично изменяющейся численностью занятых, неравномерно распределенной между отраслями экономики. В результате этого могут наблюдаться нелинейные колебания численности занятого населения, для исследования которых релевантен инструментарий агент-ориентированного моделирования. В статье на примере Еврейской автономной области рассмотрены синхронные и противофазные колебания численности занятых по видам экономической деятельности, обнаруженные во временных рядах статистических данных для 2008–2016 гг. Показано, что такие колебания наблюдаются по возрастным группам работников. Ввиду этого выдвинута гипотеза о том, что агент на рынке труда при выборе места работы руководствуется стратегией, характерной для его возрастной группы, что в итоге прямо влияет на распределение численности занятых различных когорт и общую численность занятых в отраслях экономики. При этом стратегия определяется исходя из социально-экономических характеристик отраслей (различного уровня оплаты труда, условий труда, престижа профессии). Для проверки гипотезы построена базовая агент-ориентированная модель трехотраслевой экономики, в которой учтены различные стратегии экономических агентов, включающие выбор наибольшей заработной платы, наиболее высокого престижа профессии и наилучших условий труда. В результате численных экспериментов показано, что наличие различных стратегий выбора отрасли в совокупности с возрастными предпочтениями работодателей внутри отрасли приводит к периодическим и сложным режимам динамики численности разновозрастных занятых. Такие возрастные предпочтения могут быть вызваны, например, требованием работодателя к наличию трудового стажа и образования. Также сущетвенные изменения возрастной структуры занятого населения могут возникнуть вследствие миграции.
Ключевые слова: занятое население, отрасли экономики, агент-ориентированное моделирование, нелинейная динамика.
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Views (last year): 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.
Ключевые слова: приповерхностная сетка, гидродинамика судна, численное моделирование обтекания корпуса, численное моделирование работы винта.
Usage of boundary layer grids in numerical simulations of viscous phenomena in of ship hydrodynamics problems
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 995-1008Numerical simulation of hull flow, marine propellers and other basic problems of ship hydrodynamics using Cartesian adaptive locally-refined grids is advantageous with respect to numerical setup and makes an express analysis very convenient. However, when more accurate viscous phenomena are needed, they condition some problems including a sharp increase of cell number due to high levels of main grid adaptation needed to resolve boundary layers and time step decrease in simulations with a free surface due to decrease of transit time in adapted cells. To avoid those disadvantages, additional boundary layer grids are suggested for resolution of boundary layers. The boundary layer grids are one-dimensional adaptations of main grid layers nearest to a wall, which are built along a normal direction. The boundary layer grids are additional (or chimerical), their volumes are not subtracted from main grid volumes. Governing equations of flow are integrated in both grids simultaneously, and the solutions are merged according to a special algorithm. In simulations of ship hull flow boundary layer grids are able to provide sufficient conditions for low-Reynolds turbulence models and significantly improve flow structure in continues boundary layers along smooth surfaces. When there are flow separations or other complex phenomena on a hull surface, it can be subdivided into regions, and the boundary layer grids should be applied to the regions with simple flow only. This still provides a drastic decrease of computational efforts. In simulations of marine propellers, the boundary layer grids are able to provide refuse of wall functions on blade surfaces, what leads to significantly more accurate hydrodynamic forces. Altering number and configuration of boundary grid layers, it is possible to vary a boundary layer resolution without change of a main grid. This makes the boundary layer grids a suitable tool to investigate scale effects in both problems considered.
-
Численное исследование модели Холстейна в разных термостатах
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.
Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.
В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.
Ключевые слова: квантово-классическаям одель, разрушение полярона, делокализованное состояние, термостат Ланжевена, гамильтонова система, термодинамические средние.
Numerical study of the Holstein model in different thermostats
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 489-502Based on the Holstein Hamiltonian, the dynamics of the charge introduced into the molecular chain of sites was modeled at different temperatures. In the calculation, the temperature of the chain is set by the initial data ¡ª random Gaussian distributions of velocities and site displacements. Various options for the initial charge density distribution are considered. Long-term calculations show that the system moves to fluctuations near a new equilibrium state. For the same initial velocities and displacements, the average kinetic energy, and, accordingly, the temperature of the T chain, varies depending on the initial distribution of the charge density: it decreases when a polaron is introduced into the chain, or increases if at the initial moment the electronic part of the energy is maximum. A comparison is made with the results obtained previously in the model with a Langevin thermostat. In both cases, the existence of a polaron is determined by the thermal energy of the entire chain.
According to the simulation results, the transition from the polaron mode to the delocalized state occurs in the same range of thermal energy values of a chain of $N$ sites ~ $NT$ for both thermostat options, with an additional adjustment: for the Hamiltonian system the temperature does not correspond to the initially set one, but is determined after long-term calculations from the average kinetic energy of the chain.
In the polaron region, the use of different methods for simulating temperature leads to a number of significant differences in the dynamics of the system. In the region of the delocalized state of charge, for high temperatures, the results averaged over a set of trajectories in a system with a random force and the results averaged over time for a Hamiltonian system are close, which does not contradict the ergodic hypothesis. From a practical point of view, for large temperatures T ≈ 300 K, when simulating charge transfer in homogeneous chains, any of these options for setting the thermostat can be used.
-
Поиск точек разладки в биометрических данных: ретроспективные непараметрические методы сегментации на основе динамического программирования и скользящих окон
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1295-1321Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.
Ключевые слова: космическая медицина, локомоторное тестирование, временные ряды, точка разладки, сегментация, непараметрический, ретроспективный, динамическое программирование, скользящее окно.
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
-
Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.
Statistically fair price for the European call options according to the discreet mean/variance model
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874Views (last year): 1.We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.
-
Оценка качества кластеризации панельных данных с использованием методов Монте-Карло (на примере данных российской региональной экономики)
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1501-1513В работе рассматривается метод исследования панельных данных, основанный на использовании агломеративной иерархической кластеризации — группировки объектов на основании сходства и разли- чия их признаков в иерархию вложенных друг в друга кластеров. Применялись 2 альтернативных способа вычисления евклидовых расстояний между объектами — расстояния между усредненными по интервалу наблюдений значениями и расстояния с использованием данных за все рассматриваемые годы. Сравнивались 3 альтернативных метода вычисления расстояний между кластерами. В первом случае таким расстоянием считается расстояние между ближайшими элементами из двух кластеров, во втором — среднее по парам элементов, в третьем — расстояние между наиболее удаленными элементами. Исследована эффективность использования двух индексов качества кластеризации — индекса Данна и Силуэта для выбора оптимального числа кластеров и оценки статистической значимости полученных решений. Способ оценивания статистической достоверности кластерной структуры заключался в сравнении качества кластеризации, на реальной выборке с качеством кластеризаций на искусственно сгенерированных выборках панельных данных с теми же самыми числом объектов, признаков и длиной рядов. Генерация производилась из фиксированного вероятностного распределения. Использовались способы симуляции, имитирующие гауссов белый шум и случайное блуждание. Расчеты с индексом Силуэт показали, что случайное блуждание характеризуется не только ложной регрессией, но и ложной кластеризацией. Кластеризация принималась достоверной для данного числа выделенных кластеров, если значение индекса на реальной выборке оказывалось больше значения 95%-ного квантиля для искусственных данных. В качестве выборки реальных данных использован набор временных рядов показателей, характеризующих производство в российских регионах. Для этих данных только Силуэт показывает достоверную кластеризацию на уровне $p < 0.05$. Расчеты также показали, что значения индексов для реальных данных в целом ближе к значениям для случайных блужданий, чем для белого шума, но имеют значимые отличия и от тех, и от других. Визуально можно выделить скопления близко расположенных друг от друга в трехмерном признаковом пространстве точек, выделяемые также в качестве кластеров применяемым алгоритмом иерархической кластеризации.
Assessing the validity of clustering of panel data by Monte Carlo methods (using as example the data of the Russian regional economy)
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1501-1513The paper considers a method for studying panel data based on the use of agglomerative hierarchical clustering — grouping objects based on the similarities and differences in their features into a hierarchy of clusters nested into each other. We used 2 alternative methods for calculating Euclidean distances between objects — the distance between the values averaged over observation interval, and the distance using data for all considered years. Three alternative methods for calculating the distances between clusters were compared. In the first case, the distance between the nearest elements from two clusters is considered to be distance between these clusters, in the second — the average over pairs of elements, in the third — the distance between the most distant elements. The efficiency of using two clustering quality indices, the Dunn and Silhouette index, was studied to select the optimal number of clusters and evaluate the statistical significance of the obtained solutions. The method of assessing statistical reliability of cluster structure consisted in comparing the quality of clustering on a real sample with the quality of clustering on artificially generated samples of panel data with the same number of objects, features and lengths of time series. Generation was made from a fixed probability distribution. At the same time, simulation methods imitating Gaussian white noise and random walk were used. Calculations with the Silhouette index showed that a random walk is characterized not only by spurious regression, but also by “spurious clustering”. Clustering was considered reliable for a given number of selected clusters if the index value on the real sample turned out to be greater than the value of the 95% quantile for artificial data. A set of time series of indicators characterizing production in the regions of the Russian Federation was used as a sample of real data. For these data only Silhouette shows reliable clustering at the level p < 0.05. Calculations also showed that index values for real data are generally closer to values for random walks than for white noise, but it have significant differences from both. Since three-dimensional feature space is used, the quality of clustering was also evaluated visually. Visually, one can distinguish clusters of points located close to each other, also distinguished as clusters by the applied hierarchical clustering algorithm.
-
Прогнозирование демографических и макроэкономических показателей в распределенной модели мировой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 757-779Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.
Ключевые слова: мировая динамика, математическое моделирование, макроэкономика, внешняя торговля, временные ряды, регрессионный анализ, прогноз.
Forecasting demographic and macroeconomic indicators in a distributed global model
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




