Результаты поиска по 'сегментация':
Найдено статей: 15
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 5-8
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 879-881
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 879-881
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 999-1002
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  5. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 525-528
  6. Симаков С.С.
    Современные методы математического моделирования кровотока c помощью осредненных моделей
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604

    Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.

    Simakov S.S.
    Modern methods of mathematical modeling of blood flow using reduced order methods
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604

    The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.

    Views (last year): 62. Citations: 2 (RSCI).
  7. Полежаев В.А.
    Задачи и методы автоматического построения графа цитирований по коллекции научных документов
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 707-719

    Задача автоматического построения графа цитирования по коллекции научных документов сводится к решению последовательности задач распознавания. Рассматриваются методы решения, их адаптация и объединение в технологическую цепочку, приводятся результаты вычислительных экспериментов для некоторых задач.

    Polezhaev V.A.
    Automated citation graph building from a corpora of scientific documents
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 707-719

    In this paper the problem of automated building of a citation graph from a collection of scientific documents is considered as a sequence of machine learning tasks. The overall data processing technology is described which consists of six stages: preprocessing, metainformation extraction, bibliography lists extraction, splitting bibliography lists into separate bibliography records, standardization of each bibliography record, and record linkage. The goal of this paper is to provide a survey of approaches and algorithms suitable for each stage, motivate the choice of the best combination of algorithms, and adapt some of them for multilingual bibliographies processing. For some of the tasks new algorithms and heuristics are proposed and evaluated on the mixed English and Russian documents corpora.

    Views (last year): 5. Citations: 1 (RSCI).
  8. Демьянов А.Ю., Динариев О.Ю., Лисицын Д.А.
    Моделирование частотной зависимости диэлектрической проницаемости и электрической проводимости насыщенных пористых сред
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 765-773

    В работе представлена численная методика определения спектральных электромагнитных характеристик (эффективных электрической проводимости и относительной диэлектрической проницаемости) насыщенных пористых сред. Их определение находит применение при интерпретации данных петрофизических исследований скважин, а также при изучении кернового материала. Особенностью настоящей работы является использование трехмерных цифровых моделей насыщенных пористых сред, построенных на основе комбинированной информации о микроструктуре среды и капиллярном равновесии двухфазной смеси типа «нефть–вода» в поровом пространстве. Данные о микроструктуре модели получаются путем использования методов рентгеновской микротомографии. Многофазное многокомпонентное распределение флюидов в поровом пространстве модели находится с помощью метода функционала плотности. Для определения непосредственно электромагнитных характеристик модели выполняется фурье-преобразование по времени уравнения Максвелла, выражающего обобщенную теорему Ампера о циркуляции. В низкочастотном приближении задача сводится к решению уравнения эллиптического типа на комплексный потенциал. Для конечно- разностной аппроксимации используется дискретизация модели на изотропной равномерной ортогональной сетке. При этом считается, что в каждой расчетной ячейке сетки содержится либо вода, либо нефть, либо по- рода со своими электрическими параметрами. Для этого выполняется процедура сегментации, в результате которой в модели отсутствуют ячейки, содержащие несколько фаз (нефть–вода). Подобная модификация модели позволяет избежать использования сложноструктурированных расчетных сеток, а также дает возможность исключить влияние способа задания свойств ячеек, заполненных смесью различных фаз, на результаты расчета. Полученная система разностных уравнений решается с использованием стабилизированного метода бисопряженных градиентов с многосеточным предобуславливателем. На основе вычисленных распределений комплексного потенциала находятся средние значения электрической проводимости и относительной диэлектрической проницаемости. Для простоты в настоящей работе рассматривался случай отсутствия спектральной зависимости проводимости и проницаемости компонентов от частоты. Результаты расчетов частотных зависимостей эффективных характеристик неоднородно насыщенных пористых сред (электрической проводимости и относительной диэлектрической проницаемости) в широком диапазоне частот и водонасыщенностей представлены на графиках и в таблице. В заключение делается вывод об эффективности предложенного подхода для задачи определения дисперсионных электромагнитных характеристик насыщенных горных пород.

    Demianov A.Y., Dinariev O.Y., Lisitsin D.A.
    Numerical simulation of frequency dependence of dielectric permittivity and electrical conductivity of saturated porous media
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 765-773

    This article represents numerical simulation technique for determining effective spectral electromagnetic properties (effective electrical conductivity and relative dielectric permittivity) of saturated porous media. Information about these properties is vastly applied during the interpretation of petrophysical exploration data of boreholes and studying of rock core samples. The main feature of the present paper consists in the fact, that it involves three-dimensional saturated digital rock models, which were constructed based on the combined data considering microscopic structure of the porous media and the information about capillary equilibrium of oil-water mixture in pores. Data considering microscopic structure of the model are obtained by means of X-ray microscopic tomography. Information about distributions of saturating fluids is based on hydrodynamic simulations with density functional technique. In order to determine electromagnetic properties of the numerical model time-domain Fourier transform of Maxwell equations is considered. In low frequency approximation the problem can be reduced to solving elliptic equation for the distribution of complex electric potential. Finite difference approximation is based on discretization of the model with homogeneous isotropic orthogonal grid. This discretization implies that each computational cell contains exclusively one medium: water, oil or rock. In order to obtain suitable numerical model the distributions of saturating components is segmented. Such kind of modification enables avoiding usage of heterogeneous grids and disregards influence on the results of simulations of the additional techniques, required in order to determine properties of cells, filled with mixture of media. Corresponding system of differential equations is solved by means of biconjugate gradient stabilized method with multigrid preconditioner. Based on the results of complex electric potential computations average values of electrical conductivity and relative dielectric permittivity is calculated. For the sake of simplicity, this paper considers exclusively simulations with no spectral dependence of conductivities and permittivities of model components. The results of numerical simulations of spectral dependence of effective characteristics of heterogeneously saturated porous media (electrical conductivity and relative dielectric permittivity) in broad range of frequencies and multiple water saturations are represented in figures and table. Efficiency of the presented approach for determining spectral electrical properties of saturated rocks is discussed in conclusion.

    Views (last year): 8.
  9. Мачука К.Р., Марков Н.Г.
    Модели нейронных сетей для анализа изображений с БПЛА при дистанционном лесопатологическом мониторинге хвойных лесов
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 641-663

    Рассмотрены основные задачи дистанционного лесопатологического мониторинга пораженных насекомыми-вредителями хвойных лесов. Показано, что при их решении необходимо использовать результаты мультиклассификации хвойных деревьев на изображениях высокого и сверхвысокого разрешения, оперативно получаемых при мониторинге путем съемки лесов с космических аппаратов или с беспилотных летательных аппаратов (БПЛА). Проведен аналитический обзор современных моделей и методов мультиклассификации изображений хвойных лесов и с учетом его результатов разработаны три модели полносверточных нейронных сетей Mo-U-Net, At-Mo-U-Net и Res-Mo-U-Net, основанные на классической модели U-Net, а также модифицирована модель трансформера Segformer. По RGB-изображениям поврежденных уссурийским полиграфом Polygraphus proximus деревьев пихты сибирской Abies sibirica, полученных с помощью фотокамеры на БПЛА, созданы два набора датасетов: первый набор включает фрагменты изображений и их эталонных масок сегментации размером 256 × 256 × 3 пикселей, а второй — фрагменты размером 480 × 480 × 3 пикселей. Проведены комплексные исследования каждой из обученных моделей нейросетей по точности классификации степени поражения (состояния здоровья) деревьев A. Sibirica на изображениях и по скорости вычисления моделей с использованием тестовых датасетов из каждого набора. Выявлено, что в случае фрагментов размером 256×256×3 пикселей предпочтение наряду с моделью Modified Segformer следует отдать модели с механизмом внимания At-Mo-U-Net, а в случае фрагментов размером 480 × 480 × 3 пикселей — гибридной модели с остаточными блоками Res-Mo-U-Net. Из результатов исследований точности классификации и скорости вычислений каждой из разработанных моделей сделан вывод о том, что при решении задачи мультиклассификации пораженных деревьев пихты в производственных масштабах предпочтение следует отдать модели Res-Mo-U-Net. Именно она является компромиссным вариантом, удовлетворяющим противоречащим друг другу требованиям высокой точности классификации деревьев на изображениях и высокой скорости вычислений модели.

    Machuca C.R., Markov N.G.
    Advanced neural network models for UAV-based image analysis in remote pathology monitoring of coniferous forests
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 641-663

    The key problems of remote forest pathology monitoring for coniferous forests affected by insect pests have been analyzed. It has been demonstrated that addressing these tasks requires the use of multiclass classification results for coniferous trees in high- and ultra-high-resolution images, which are promptly obtained through monitoring via satellites or unmanned aerial vehicles (UAVs). An analytical review of modern models and methods for multiclass classification of coniferous forest images was conducted, leading to the development of three fully convolutional neural network models: Mo-U-Net, At-Mo-U-Net, and Res-Mo-U-Net, all based on the classical U-Net architecture. Additionally, the Segformer transformer model was modified to suit the task. For RGB images of fir trees Abies sibirica affected by the four-eyed bark beetle Polygraphus proximus, captured using a UAV-mounted camera, two datasets were created: the first dataset contains image fragments and their corresponding reference segmentation masks sized 256 × 256 × 3 pixels, while the second dataset contains fragments sized 480 × 480 × 3 pixels. Comprehensive studies were conducted on each trained neural network model to evaluate both classification accuracy for assessing the degree of damage (health status) of Abies sibirica trees and computation speed using test datasets from each set. The results revealed that for fragments sized 256 × 256 × 3 pixels, the At-Mo-U-Net model with an attention mechanism is preferred alongside the Modified Segformer model. For fragments sized 480 × 480 × 3 pixels, the Res-Mo-U-Net hybrid model with residual blocks demonstrated superior performance. Based on classification accuracy and computation speed results for each developed model, it was concluded that, for production-scale multiclass classification of affected fir trees, the Res-Mo-U-Net model is the most suitable choice. This model strikes a balance between high classification accuracy and fast computation speed, meeting conflicting requirements effectively.

  10. Никольский И.М.
    Оптимизация размера классификатора при сегментации трехмерных точечных образов древесной растительности
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 665-675

    Появление технологий лазерного сканирования произвело настоящую революцию в лесном хозяйстве. Их использование позволило перейти от изучения лесных массивов с помощью ручных измерений к компьютерному анализу точечных стереоизображений, называемых облаками точек.

    Автоматическое вычисление некоторых параметров деревьев (таких как диаметр ствола) по облаку точек требует удаления точек листвы. Для выполнения этой операции необходима предварительная сегментация стереоизображения на классы «листва» и «ствол». Решение этой задачи зачастую включает использование методов машинного обучения.

    Одним из самых популярных классификаторов, используемых для сегментации стереоизображений деревьев, является случайный лес. Этот классификатор достаточно требователен к объему памяти. В то же время размер модели машинного обучения может быть критичным при необходимости ее пересылки, что требуется, например, при выполнении распределенного обучения. В данной работе ставится цель найти классификатор, который был бы менее требовательным по памяти, но при этом имел бы сравнимую точность сегментации. Поиск выполняется среди таких классификаторов, как логистическая регрессия, наивный байесовский классификатор и решающее дерево. Кроме того, исследуется способ уточнения сегментации, выполненной решающим деревом, с помощью логистической регрессии.

    Эксперименты проводились на данных из коллекции университета Гейдельберга. Было показано, что классификация с помощью решающего дерева, корректируемая с помощью логистической регрессии, способна давать результат, лишь немного проигрывающий результату случайного леса по точности, затрачивая при этом меньше времени и оперативной памяти. Разница в сбалансированной точности составляет не более процента на всех рассмотренных облаках, при этом суммарный размер и время предсказания классификаторов решающего дерева и логистической регрессии на порядок меньше, чем у случайного леса.

    Nikolsky I.M.
    Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675

    The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.

    Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.

    One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.

    The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.

    It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"