Результаты поиска по 'сегментация':
Найдено статей: 15
  1. Шлеймович М.П., Дагаева М.В., Катасёв А.С., Ляшева С.А., Медведев М.В.
    Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376

    В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.

    Shleymovich M.P., Dagaeva M.V., Katasev A.S., Lyasheva S.A., Medvedev M.V.
    The analysis of images in control systems of unmanned automobiles on the base of energy features model
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376

    The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.

    Views (last year): 31. Citations: 1 (RSCI).
  2. Керчев И.А., Марков Н.Г., Мачука К.Р., Токарева О.С.
    Модели сверточных нейронных сетей для классификации поврежденных вредителями хвойных деревьев на изображениях с беспилотных летательных аппаратов
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1271-1294

    В статье рассмотрена задача мультиклассификации хвойных деревьев с различной степенью поражения насекомыми-вредителями на изображениях, полученных с помощью беспилотных летательных аппаратов (БПЛА). Предложены три модификации классической сверточной нейронной сети U-Net для попиксельной классификации изображений пораженных деревьев пихты сибирской Abies sibirica и кедра сибирского Pinus sibirica. Первая модель Мо-U-Net вносит ряд изменений в классическую модель U-Net. Вторая и третья модели, названные MSC-U-Net и MSC-Res-U-Net, представляют собой ансамбли из трех моделей Мо-U-Net с разной глубиной и размерами входных изображений. В модели MSC-Res-U-Net также используются остаточные блоки. Нами созданы два датасета по изображениям с БПЛА пораженных вредителями деревьев Abies sibirica и Pinus Sibirica и обучены предложенные три модели с использованием функций потерь mIoULoss и Focal Loss. Затем исследовалась эффективность каждой обученной модели при классификации поврежденных деревьев Abies sibirica и Pinus sibirica. Результаты показали, что в случае использования функции потерь mIoULoss предложенные модели не пригодны для практического применения в лесной отрасли, поскольку не позволяют получить для отдельных классов деревьев этих пород точность классификации по метрике IoUс, превышающую пороговое значение 0,5. Однако в случае функции потерь Focal Loss модели MSC-Res-U-Net и Mo-U-Net, в отличие от третьей предложенной модели MSC-U-Net, для всех классов деревьев Abies sibirica и Pinus sibirica показывают высокую точность классификации (превышение порогового значения 0,5 по метрикам IoUс и mIoU). Эти результаты позволяют считать, что модели MSC-Res-U-Net и Mo-U-Net являются практически значимыми для специалистов лесной отрасли, поскольку позволяют выявлять хвойные деревья этих пород на ранней стадии их поражения вредителями.

    Kerchev I.A., Markov N.G., Machuca C.R., Tokareva O.S.
    Classification of pest-damaged coniferous trees in unmanned aerial vehicles images using convolutional neural network models
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1271-1294

    This article considers the task of multiclass classification of coniferous trees with varying degrees of damage by insect pests on images obtained using unmanned aerial vehicles (UAVs). We propose the use of convolutional neural networks (CNNs) for the classification of fir trees Abies sibirica and Siberian pine trees Pinus sibirica in unmanned aerial vehicles (UAV) imagery. In our approach, we develop three CNN models based on the classical U-Net architecture, designed for pixel-wise classification of images (semantic segmentation). The first model, Mo-U-Net, incorporates several changes to the classical U-Net model. The second and third models, MSC-U-Net and MSC-Res-U-Net, respectively, form ensembles of three Mo-U-Net models, each varying in depth and input image sizes. Additionally, the MSC-Res-U-Net model includes the integration of residual blocks. To validate our approach, we have created two datasets of UAV images depicting trees affected by pests, specifically Abies sibirica and Pinus sibirica, and trained the proposed three CNN models utilizing mIoULoss and Focal Loss as loss functions. Subsequent evaluation focused on the effectiveness of each trained model in classifying damaged trees. The results obtained indicate that when mIoULoss served as the loss function, the proposed models fell short of practical applicability in the forestry industry, failing to achieve classification accuracy above the threshold value of 0.5 for individual classes of both tree species according to the IoU metric. However, under Focal Loss, the MSC-Res-U-Net and Mo-U-Net models, in contrast to the third proposed model MSC-U-Net, exhibited high classification accuracy (surpassing the threshold value of 0.5) for all classes of Abies sibirica and Pinus sibirica trees. Thus, these results underscore the practical significance of the MSC-Res-U-Net and Mo-U-Net models for forestry professionals, enabling accurate classification and early detection of pest outbreaks in coniferous trees.

  3. Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.

    Shestoperov A.I., Ivchenko A.V., Fomina E.V.
    Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321

    This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.

  4. Воронина М.Ю., Орлов Ю.Н.
    Определение автора текста методом сегментации
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1199-1210

    В работе описывается метод распознавания авторов литературных текстов по близости фрагментов, на которые разделен отдельный текст, к эталону автора. Эталоном является эмпирическое распределение частот буквосочетаний, построенное по обучающей выборке, куда вошли экспертно отобранные достоверно известные произведения данного автора. Совокупность эталонов разных авторов образует библиотеку, внутри которой и решается задача об идентификации автора неизвестного текста. Близость между текстами понимается в смысле нормы в L1 для вектора частот буквосочетаний, который строится для каждого фрагмента и для текста в целом. Автором неизвестного текста назначается тот, эталон которого чаще всего выбирается в качестве ближайшего для набора фрагментов, на которые разделен текст. Длина фрагмента оптимизируется исходя из принципа максимального различия расстояний от фрагментов до эталонов в задаче распознавания «свой–чужой». Тестирование метода проведено на корпусе отечественных и зарубежных (в переводе) авторов. Были собраны 1783 текста 100 авторов суммарным объемом примерно 700 млн знаков. Чтобы исключить тенденциозность отбора авторов, рассматривались авторы, фамилии которых начинались на одну и ту же букву (в данном случае Л). Ошибка идентификации по биграммам составила 12%. Наряду с достаточно высокой точностью данный метод обладает еще одним важным свойством: он позволяет оценить вероятность того, что эталон автора рассматриваемого текста в библиотеке отсутствует. Эта вероятность может быть оценена по результатам статистики ближайших эталонов для малых фрагментов текста. В работе исследуются также статистические цифровые портреты писателей: это совместные эмпирические распределения вероятности того, что некоторая доля текста идентифицируется на заданном уровне доверия. Практическая важность этих статистик в том, что носители соответствующих распределений практически не пересекаются для своих и чужих эталонов, что позволяет распознать эталонное распределение буквосочетаний на высоком уровне доверия.

    Voronina M.Y., Orlov Y.N.
    Identification of the author of the text by segmentation method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1199-1210

    The paper describes a method for recognizing authors of literary texts by the proximity of fragments into which a separate text is divided to the standard of the author. The standard is the empirical frequency distribution of letter combinations, built on a training sample, which included expertly selected reliably known works of this author. A set of standards of different authors forms a library, within which the problem of identifying the author of an unknown text is solved. The proximity between texts is understood in the sense of the norm in L1 for the frequency vector of letter combinations, which is constructed for each fragment and for the text as a whole. The author of an unknown text is assigned the one whose standard is most often chosen as the closest for the set of fragments into which the text is divided. The length of the fragment is optimized based on the principle of the maximum difference in distances from fragments to standards in the problem of recognition of «friend–foe». The method was tested on the corpus of domestic and foreign (translated) authors. 1783 texts of 100 authors with a total volume of about 700 million characters were collected. In order to exclude the bias in the selection of authors, authors whose surnames began with the same letter were considered. In particular, for the letter L, the identification error was 12%. Along with a fairly high accuracy, this method has another important property: it allows you to estimate the probability that the standard of the author of the text in question is missing in the library. This probability can be estimated based on the results of the statistics of the nearest standards for small fragments of text. The paper also examines statistical digital portraits of writers: these are joint empirical distributions of the probability that a certain proportion of the text is identified at a given level of trust. The practical importance of these statistics is that the carriers of the corresponding distributions practically do not overlap for their own and other people’s standards, which makes it possible to recognize the reference distribution of letter combinations at a high level of confidence.

  5. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

    Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"