All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.
В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.
Ключевые слова: компьютерное моделирование, численные методы, гиперболические системы, сеточно-характеристический численный метод, операторное расщепление, порядок сходимости.
Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.
In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.
-
Предсказание производительности избранных типов циклов над одномерными массивами посредством анализа эмбеддингов промежуточных представлений
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 211-224Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.
Ключевые слова: математическое моделирование, компиляторы, промежуточные представления программ, эмбеддинги, анализ производительности, статический анализ.
Performance prediction for chosen types of loops over one-dimensional arrays with embedding-driven intermediate representations analysis
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 211-224The method for mapping of intermediate representations (IR) set of C, C++ programs to vector embedding space is considered to create an empirical estimation framework for static performance prediction using LLVM compiler infrastructure. The usage of embeddings makes programs easier to compare due to avoiding Control Flow Graphs (CFG) and Data Flow Graphs (DFG) direct comparison. This method is based on transformation series of the initial IR such as: instrumentation — injection of artificial instructions in an instrumentation compiler’s pass depending on load offset delta in the current instruction compared to the previous one, mapping of instrumented IR into multidimensional vector with IR2Vec and dimension reduction with t-SNE (t-distributed stochastic neighbor embedding) method. The D1 cache miss ratio measured with perf stat tool is considered as performance metric. A heuristic criterion of programs having more or less cache miss ratio is given. This criterion is based on embeddings of programs in 2D-space. The instrumentation compiler’s pass developed in this work is described: how it generates and injects artificial instructions into IR within the used memory model. The software pipeline that implements the performance estimation based on LLVM compiler infrastructure is given. Computational experiments are performed on synthetic tests which are the sets of programs with the same CFGs but with different sequences of offsets used when accessing the one-dimensional array of a given size. The correlation coefficient between performance metric and distance to the worst program’s embedding is measured and proved to be negative regardless of t-SNE initialization. This fact proves the heuristic criterion to be true. The process of such synthetic tests generation is also considered. Moreover, the variety of performance metric in programs set in such a test is proposed as a metric to be improved with exploration of more tests generators.
-
Применение создаваемых по требованию виртуальных кластеров в высокопроизводительных вычислениях
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 511-516Виртуальные машины обычно ассоциируются с возможностью создавать их по требованию для предоставления клиентам разнородных веб-сервисов, однако, автоматическое создание виртуальных машин для запуска на них вычислений общего назначения на практике широко не используется. Такой сценарий использования виртуализации полезен в среде высокопроизводительных вычислений, где большинство ресурсов не потребляется разнородными сервисами, а используется для пакетной обработки данных. В этом случае для запуска каждого приложения создается отдельный кластер виртуальных машин, а запись выходных данных производится на сетевое хранилище. После того как приложение завершает свое выполнение, кластер уничтожается, высвобождая занятые вычислительные ресурсы. После определенных изменений данный подход может быть использован для предоставления виртуального рабочего стола в интерактивном режиме. Эксперименты показывают, что процесс создания виртуальных кластеров по требованию может быть эффективно реализован в обоих случаях.
Applications of on-demand virtual clusters to high performance computing
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 511-516Views (last year): 1.Virtual machines are usually associated with an ability to create them on demand by calling web services, then these machines are used to deliver resident services to their clients; however, providing clients with an ability to run an arbitrary programme on the newly created machines is beyond their power. Such kind of usage is useful in a high performance computing environment where most of the resources are consumed by batch programmes and not by daemons or services. In this case a cluster of virtual machines is created on demand to run a distributed or parallel programme and to save its output to a network attached storage. Upon completion this cluster is destroyed and resources are released. With certain modifications this approach can be extended to interactively deliver computational resources to the user thus providing virtual desktop as a service. Experiments show that the process of creating virtual clusters on demand can be made efficient in both cases.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Исследование механических свойств C-кадгерина методом молекулярной динамики
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.
Investigation of C-Cadherin mechanical properties by Molecular Dynamics
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735Views (last year): 5.The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.
-
Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.
Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.
-
Решение распределенных вариационных неравенств с использованием смещенной компрессии, похожести данных и локальных обновлений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1813-1827Вариационные неравенства представляют собой широкий класс задач, имеющих применение во множестве областей, включая теорию игр, экономику и машинное обучение. Однако, методы решения современных вариационных неравенств становятся все более вычислительно требовательными. Поэтому растет необходимость использовать распределенных подходов для решения таких задач за разумное время. В распределенной постановке вычислительным устройствам необходимо обмениваться данными друг с другом, что является узким местом. Существует три основных приема снижения стоимости и количества обменов данными: использование похожести локальных операторов, сжатие сообщений и применение локальных шагов на устройствах. Известен алгоритм, который использует эти три техники одновременно для решения распределенных вариационных неравенств и превосходит все остальные методы с точки зрения коммуникационных затрат. Однако этот метод работает только с так называемыми несмещенными операторами сжатия. Между тем использование смещенных операторов приводит к лучшим результатам на практике, но требует дополнительных модификаций алгоритма и больших усилий при доказательстве сходимости. В этой работе представляется новый алгоритм, который решает распределенные вариационные неравенства, используя похожесть локальных операторов, смещенное сжатие и локальные обновления на устройствах; выводится теоретическая сходимость такого алгоритма и проводятся эксперименты.
Communication-efficient solution of distributed variational inequalities using biased compression, data similarity and local updates
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1813-1827Variational inequalities constitute a broad class of problems with applications in a number of fields, including game theory, economics, and machine learning. Today’s practical applications of VIs are becoming increasingly computationally demanding. It is therefore necessary to employ distributed computations to solve such problems in a reasonable time. In this context, workers have to exchange data with each other, which creates a communication bottleneck. There are three main techniques to reduce the cost and the number of communications: the similarity of local operators, the compression of messages and the use of local steps on devices. There is an algorithm that uses all of these techniques to solve the VI problem and outperforms all previous methods in terms of communication complexity. However, this algorithm is limited to unbiased compression. Meanwhile, biased (contractive) compression leads to better results in practice, but it requires additional modifications within an algorithm and more effort to prove the convergence. In this work, we develop a new algorithm that solves distributed VI problems using data similarity, contractive compression and local steps on devices, derive the theoretical convergence of such an algorithm, and perform some experiments to show the applicability of the method.
-
Регуляризация и ускорение метода Гаусса – Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.
Ключевые слова: системы нелинейных уравнений, невыпуклая оптимизация, метод Гаусса – Ньютона, условие Поляка – Лоясиевича, оценка сложности.
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Комплекс слежения за вычислительными задачами в системе информационной поддержки научных проектов
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 615-620В данной работе рассматривается идея системы информационной поддержки научных проектов и построение комплекса слежения за вычислительными задачами. Ввиду больших потребностей в вычислительных экспериментах предоставление информации о вычислительных задачах на HPC-ресурсах становится одной из важнейших проблем. В качестве решения этой проблемы предлагается нестандартное использование системы service desk — построение на ее базе комплекса слежения за выполнением вычислительных задач на распределенной системе и ее сопровождения. Особое внимание в статье уделено анализу и удовлетворению противоречивых требований к комплексу со стороны разных групп пользователей. Помимо этого, рассмотрена система веб-служб, служащая для интеграции комплекса слежения с окружением датацентра. Данный набор веб-служб является основным связующим компонентом системы поддержки научных проектов и позволяет гибко изменять конфигурацию системы в целом в любое время с минимальными потерями.
Computational task tracking complex in the scientific project informational support system
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 615-620Views (last year): 2. Citations: 1 (RSCI).This work describes the idea of the system of informational support for the scientific projects and the development of computational task tracking complex. Due to large requirements for computational experiments the problem of presentation of the information about HPC tasks becomes one of the most important. Nonstandard usage of the service desk system as a basis of the computational task tracking and support system can be the solution of this problem. Particular attention is paid to the analysis and the satisfaction of the conflicting requirements to the task tracking complex from the different user groups. Besides the web service kit used for the integration of the task tracking complex and the datacenter environment is considered. This service kit became the main interconnect between the parts of the scientific project support system and also this kit allows to reconfigure the whole system quickly and safely.
-
Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).
Ключевые слова: высокопроизводительные вычислительные системы, системы распределенного массового хранения данных, системы распределенной обработки данных, грид.
The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630Views (last year): 2.The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




