Результаты поиска по 'глубокое обучение':
Найдено статей: 17
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 209-212
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1261-1264
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 821-823
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1341-1343
  7. Интерпретируемость моделей глубокого обучения стала центром исследований, особенно в таких областях, как здравоохранение и финансы. Модели с «бутылочным горлышком», используемые для выявления концептов, стали перспективным подходом для достижения прозрачности и интерпретируемости за счет использования набора известных пользователю понятий в качестве промежуточного представления перед слоем предсказания. Однако ручное аннотирование понятий не затруднено из-за больших затрат времени и сил. В нашей работе мы исследуем потенциал больших языковых моделей (LLM) для создания высококачественных банков концептов и предлагаем мультимодальную метрику для оценки качества генерируемых концептов. Мы изучили три ключевых вопроса: способность LLM генерировать банки концептов, сопоставимые с существующими базами знаний, такими как ConceptNet, достаточность унимодального семантического сходства на основе текста для оценки ассоциаций концептов с метками, а также эффективность мультимодальной информации для количественной оценки качества генерации концептов по сравнению с унимодальным семантическим сходством концепт-меток. Наши результаты показывают, что мультимодальные модели превосходят унимодальные подходы в оценке сходства между понятиями и метками. Более того, сгенерированные нами концепты для наборов данных CIFAR-10 и CIFAR-100 превосходят те, что были получены из ConceptNet и базовой модели, что демонстрирует способность LLM генерировать высококачественные концепты. Возможность автоматически генерировать и оценивать высококачественные концепты позволит исследователям работать с новыми наборами данных без дополнительных усилий.

    Ahmad U., Ivanov V.
    Automating high-quality concept banks: leveraging LLMs and multimodal evaluation metrics
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1555-1567

    Interpretability in recent deep learning models has become an epicenter of research particularly in sensitive domains such as healthcare, and finance. Concept bottleneck models have emerged as a promising approach for achieving transparency and interpretability by leveraging a set of humanunderstandable concepts as an intermediate representation before the prediction layer. However, manual concept annotation is discouraged due to the time and effort involved. Our work explores the potential of large language models (LLMs) for generating high-quality concept banks and proposes a multimodal evaluation metric to assess the quality of generated concepts. We investigate three key research questions: the ability of LLMs to generate concept banks comparable to existing knowledge bases like ConceptNet, the sufficiency of unimodal text-based semantic similarity for evaluating concept-class label associations, and the effectiveness of multimodal information in quantifying concept generation quality compared to unimodal concept-label semantic similarity. Our findings reveal that multimodal models outperform unimodal approaches in capturing concept-class label similarity. Furthermore, our generated concepts for the CIFAR-10 and CIFAR-100 datasets surpass those obtained from ConceptNet and the baseline comparison, demonstrating the standalone capability of LLMs in generating highquality concepts. Being able to automatically generate and evaluate high-quality concepts will enable researchers to quickly adapt and iterate to a newer dataset with little to no effort before they can feed that into concept bottleneck models.

  8. Зацерковный А.В., Нурминский Е.А.
    Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318

    Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.

    Zatserkovnyy A.V., Nurminski E.A.
    Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318

    Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.

  9. Ососков Г.А., Бакина О.В., Баранов Д.А., Гончаров П.В., Денисенко И.И., Жемчугов А.С., Нефедов Ю.А., Нечаевский А.В., Никольская А.Н., Щавелев Е.М., Ван Л., Сунь Ш., Чжан Я.
    Нейросетевая реконструкция треков частиц для внутреннего CGEM-детектораэк сперимента BESIII
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1361-1381

    Реконструкция траекторий заряженных частиц в трековых детекторах является ключевой проблемой анализа экспериментальных данных для физики высоких энергий и ядерной физики. Поток данных в современных экспериментах растет день ото дня, и традиционные методы трекинга уже не в состоянии соответствовать этим объемам данных по скорости обработки. Для решения этой проблемы нами были разработаны два нейросетевых алгоритма, использующих методы глубокого обучения, для локальной (каждый трек в отдельности) и глобальной (все треки в событии) реконструкции треков применительно к данным трекового GEM-детектора эксперимента BM@N ОИЯИ. Преимущество глубоких нейронных сетей обусловлено их способностью к обнаружению скрытых нелинейных зависимостей в данных и возможностью параллельного выполнения операций линейной алгебры, лежащих в их основе.

    В данной статье приведено описание исследования по обобщению этих алгоритмов и их адаптации к применению для внутреннего поддетектора CGEM (BESIII ИФВЭ, Пекин). Нейросетевая модель RDGraphNet для глобальной реконструкции треков, разработанная на основе реверсного орграфа, успешно адаптирована. После обучения на модельных данных тестирование показало обнадеживающие результаты: для распознавания треков полнота (recall) составила 98% и точность (precision) — 86%. Однако адаптация «локальной» нейросетевой модели TrackNETv2 потребовала учета специфики цилиндрического детектора CGEM (BESIII), состоящего всего из трех детектирующих слоев, и разработки дополнительного нейроклассификатора для отсева ложных треков. Полученная программа TrackNETv2.1 протестирована в отладочном режиме. Значение полноты на первом этапе обработки составило 99%. После применения классификатора точность составила 77%, при незначительном снижении показателя полноты до 94%. Данные результаты предполагают дальнейшее совершенствование модели локального трекинга.

    Ososkov G.A., Bakina O.V., Baranov D.A., Goncharov P.V., Denisenko I.I., Zhemchugov A.S., Nefedov Y.A., Nechaevskiy A.V., Nikolskaya A.N., Shchavelev E.M., Wang L., Sun S., Zhang Y.
    Tracking on the BESIII CGEM inner detector using deep learning
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381

    The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.

    The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.

    In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.

    The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.

  10. Кайсрани С.Н., Хаттак А., Зубаир Асгар М., Кулеев Р., Имбугва Г.
    Эффективная диагностика сердечно-сосудистых заболеваний с использованием композиционного глубокого обучения и техники объяснимого искусственного интеллекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1651-1666

    Сердечно-сосудистые заболевания на протяжении последних десятилетий представляют собой серьезную угрозу здоровью населения во всем мире, независимо от уровня развития страны. Ранняя диагностика и постоянный медицинский контроль могли бы значительно снизить смертность от этих заболеваний. Однако существующие системы здравоохранения зачастую не в состоянии обеспечить необходимый уровень мониторинга пациентов из-за ограниченных ресурсов.

    В рамках нашего исследования мы использовали метод SHAP для объяснения работы модели глубокого обучения Bi-LSTM+CNN, разработанной для прогнозирования сердечно-сосудистых заболеваний. Путем балансировки данных и применения кросс-валидации мы достигли высокой точности (99,05%), полноты (99%) и F1-меры (99%) модели. Интерпретируемость модели, обеспечиваемая методом SHAP, повышает доверие медицинских специалистов к полученным результатам и способствует более широкому внедрению искусственного интеллекта в клиническую практику.

    Qaisrani S.N., Khattak A., Zubair Asghar M., Kuleev R., Imbugva G.
    Efficient diagnosis of cardiovascular disease using composite deep learning and explainable AI technique
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1651-1666

    During the last several decades, cardiovascular disease has surpassed all others as the leading cause of mortality in both high-income and low-income countries. The mortality rate from heart disorders may be lowered with early identification and close clinical monitoring. However, it is not feasible to adequately monitor patients every day, and 24-hour consultation with a doctor is not a feasible option, since it requires more sagacity, time, and knowledge than is currently available.

    In this study, we examine the Explainable Artificial Intelligence (XAI) technique, namely, the SHAP interpretability approach, in order to educate the medical professionals about the Explainable AI (XAI) methods that can be helpful in healthcare. The XAI methods enhance the trust and understandability of both practitioners and Health Researchers in AI Models. In this work, we propose a composite Deep Learning model: Bi-LSTM+CNN model to effectively predict heart disease from patient data. After balancing the dataset, the Bi-LSTM+CNN model was used. In contrast to other studies, our proposed hybrid deep learning model produced excellent experimental results, including 99.05% accuracy, 99% precision, 99% recall, and 99% F1-score.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"