All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.
Ключевые слова: сборка, последовательность сборки, CAAP-система, САПР, анализ геометрических препятствий.
Optimization of geometric analysis strategy in CAD-systems
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 825-840Computer-aided assembly planning for complex products is an important engineering and scientific problem. The assembly sequence and content of assembly operations largely depend on the mechanical structure and geometric properties of a product. An overview of geometric modeling methods that are used in modern computer-aided design systems is provided. Modeling geometric obstacles in assembly using collision detection, motion planning, and virtual reality is very computationally intensive. Combinatorial methods provide only weak necessary conditions for geometric reasoning. The important problem of minimizing the number of geometric tests during the synthesis of assembly operations and processes is considered. A formalization of this problem is based on a hypergraph model of the mechanical structure of the product. This model provides a correct mathematical description of coherent and sequential assembly operations. The key concept of the geometric situation is introduced. This is a configuration of product parts that requires analysis for freedom from obstacles and this analysis gives interpretable results. A mathematical description of geometric heredity during the assembly of complex products is proposed. Two axioms of heredity allow us to extend the results of testing one geometric situation to many other situations. The problem of minimizing the number of geometric tests is posed as a non-antagonistic game between decision maker and nature, in which it is required to color the vertices of an ordered set in two colors. The vertices represent geometric situations, and the color is a metaphor for the result of a collision-free test. The decision maker’s move is to select an uncolored vertex; nature’s answer is its color. The game requires you to color an ordered set in a minimum number of moves by decision maker. The project situation in which the decision maker makes a decision under risk conditions is discussed. A method for calculating the probabilities of coloring the vertices of an ordered set is proposed. The basic pure strategies of rational behavior in this game are described. An original synthetic criterion for making rational decisions under risk conditions has been developed. Two heuristics are proposed that can be used to color ordered sets of high cardinality and complex structure.
-
Автоматизация построения банков высококачественных концептов с использованием больших языковых моделей и мультимодальных метрик
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1555-1567Интерпретируемость моделей глубокого обучения стала центром исследований, особенно в таких областях, как здравоохранение и финансы. Модели с «бутылочным горлышком», используемые для выявления концептов, стали перспективным подходом для достижения прозрачности и интерпретируемости за счет использования набора известных пользователю понятий в качестве промежуточного представления перед слоем предсказания. Однако ручное аннотирование понятий не затруднено из-за больших затрат времени и сил. В нашей работе мы исследуем потенциал больших языковых моделей (LLM) для создания высококачественных банков концептов и предлагаем мультимодальную метрику для оценки качества генерируемых концептов. Мы изучили три ключевых вопроса: способность LLM генерировать банки концептов, сопоставимые с существующими базами знаний, такими как ConceptNet, достаточность унимодального семантического сходства на основе текста для оценки ассоциаций концептов с метками, а также эффективность мультимодальной информации для количественной оценки качества генерации концептов по сравнению с унимодальным семантическим сходством концепт-меток. Наши результаты показывают, что мультимодальные модели превосходят унимодальные подходы в оценке сходства между понятиями и метками. Более того, сгенерированные нами концепты для наборов данных CIFAR-10 и CIFAR-100 превосходят те, что были получены из ConceptNet и базовой модели, что демонстрирует способность LLM генерировать высококачественные концепты. Возможность автоматически генерировать и оценивать высококачественные концепты позволит исследователям работать с новыми наборами данных без дополнительных усилий.
Ключевые слова: интерпретируемость, большие языковые модели, нейросети с «бутылочным горлышком», машинное обучение.
Automating high-quality concept banks: leveraging LLMs and multimodal evaluation metrics
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1555-1567Interpretability in recent deep learning models has become an epicenter of research particularly in sensitive domains such as healthcare, and finance. Concept bottleneck models have emerged as a promising approach for achieving transparency and interpretability by leveraging a set of humanunderstandable concepts as an intermediate representation before the prediction layer. However, manual concept annotation is discouraged due to the time and effort involved. Our work explores the potential of large language models (LLMs) for generating high-quality concept banks and proposes a multimodal evaluation metric to assess the quality of generated concepts. We investigate three key research questions: the ability of LLMs to generate concept banks comparable to existing knowledge bases like ConceptNet, the sufficiency of unimodal text-based semantic similarity for evaluating concept-class label associations, and the effectiveness of multimodal information in quantifying concept generation quality compared to unimodal concept-label semantic similarity. Our findings reveal that multimodal models outperform unimodal approaches in capturing concept-class label similarity. Furthermore, our generated concepts for the CIFAR-10 and CIFAR-100 datasets surpass those obtained from ConceptNet and the baseline comparison, demonstrating the standalone capability of LLMs in generating highquality concepts. Being able to automatically generate and evaluate high-quality concepts will enable researchers to quickly adapt and iterate to a newer dataset with little to no effort before they can feed that into concept bottleneck models.
-
Дискретная форма уравнений в теории переключающегося воспроизводства с различными вариантами финансовых потоков
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 803-815Разные варианты моделей переключающегося режима воспроизводства описывают совокупность взаимодействующих друг с другом макроэкономических производственных подсистем, каждой из которых соответствует свое домашнее хозяйство. Эти подсистемы различаются между собой по возрасту используемого ими основного капитала, поскольку они по очереди останавливают производство продукции для его обновления собственными силами (для ремонта оборудования и для привнесения инноваций, увеличивающих эффективность производства). Это принципиально отличает данный тип моделей от моделей, описывающих режим совместного воспроизводства, при котором обновление основного капитала и производство продукта происходят одновременно. Модели переключающегося режима воспроизводства позволяют наглядно описать механизмы таких явлений, как денежные кругообороты и амортизация, а также описывать различные виды монетарной политики, позволяют по-новому интерпретировать механизмы экономического роста. В отличие от многих других макроэкономических моделей модели этого класса, в которых конкурирующие между собой подсистемы поочередно приобретают преимущество над остальными за счет обновления, принципиально не равновесны. Изначально они были описаны в виде систем обыкновенных дифференциальных уравнений со скачкообразно меняющимися коэффициентами. В численных расчетах, проводившихся для этих систем, в зависимости от значений параметров и начальных условий была выявлена как регулярная, так и нерегулярная динамика. В данной работе показано, что простейшие варианты этой модели без использования дополнительных приближений могут быть представлены в дискретной форме (в виде нелинейных отображений) при различных вариантах (непрерывных и дискретных) финансовых потоков между подсистемами (интерпретируемых как зарплаты и субсидии). Эта форма представления более удобна для получения строгих аналитических результатов, а также для проведения более экономных и точных численных расчетов. В частности, ее использование позволило определить начальные условия, соответствующие скоординированному, устойчивому экономическому росту без систематического отставания в производительности одних подсистем от других.
Ключевые слова: основной капитал, амортизация, переключающийся режим воспроизводства, скоординированный экономический рост, дискретные отображения.
The discrete form of the equations in the theory of the shifting mode of reproduction with different variants of financial flows
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 803-815Views (last year): 1. Citations: 4 (RSCI).Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.
-
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель.
Cloud interpretation of the entropy model for calculating the trip matrix
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 89-103As the population of cities grows, the need to plan for the development of transport infrastructure becomes more acute. For this purpose, transport modeling packages are created. These packages usually contain a set of convex optimization problems, the iterative solution of which leads to the desired equilibrium distribution of flows along the paths. One of the directions for the development of transport modeling is the construction of more accurate generalized models that take into account different types of passengers, their travel purposes, as well as the specifics of personal and public modes of transport that agents can use. Another important direction of transport models development is to improve the efficiency of the calculations performed. Since, due to the large dimension of modern transport networks, the search for a numerical solution to the problem of equilibrium distribution of flows along the paths is quite expensive. The iterative nature of the entire solution process only makes this worse. One of the approaches leading to a reduction in the number of calculations performed is the construction of consistent models that allow to combine the blocks of a 4-stage model into a single optimization problem. This makes it possible to eliminate the iterative running of blocks, moving from solving a separate optimization problem at each stage to some general problem. Early work has proven that such approaches provide equivalent solutions. However, it is worth considering the validity and interpretability of these methods. The purpose of this article is to substantiate a single problem, that combines both the calculation of the trip matrix and the modal choice, for the generalized case when there are different layers of demand, types of agents and classes of vehicles in the transport network. The article provides possible interpretations for the gauge parameters used in the problem, as well as for the dual factors associated with the balance constraints. The authors of the article also show the possibility of combining the considered problem with a block for determining network load into a single optimization problem.
-
Определение крупных трещин в геологической среде с использованием сверточных нейронных сетей
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 889-901В данной работе рассматривается обратная задача сейсморазведки — определение структуры исследуемой среды по зарегистрированному волновому отклику от нее. В качестве целевого объекта рассматриваются крупные трещины, размеры и положение которых необходимо определить.
Для решения прямой задачи используется численное моделирование сеточно-характеристическим методом. Сеточно-характеристический метод позволяет применять физически обоснованные алгоритмы расчета точек на внешних границах области и контактных границах внутри области интегрирования. Трещина принимается тонкой, для описания трещины используется специальное условие на створках трещины.
Обратная задача решается с помощью сверточных нейронных сетей. Входными данными нейронной сети являются сейсмограммы, интерпретируемые как изображения. Выходными данными являются маски, описывающие среду на структурированной сетке. Каждый элемент такой сетки относится к одному из двух классов: либо элемент сплош- ного геологического массива, либо элемент, через который проходит трещина. Такой подход позволяет рассматривать среду, в которой находится неизвестное наперед количество трещин.
Для обучения нейронной сети использовались исключительно примеры с одной трещиной. Для итогового тестирования обученной сети использовались отдельные примеры с несколькими трещинами, эти примеры никак не были задействованы в ходе обучения. Целью тестирования в таких условиях была проверка, что обученная сеть обладает достаточной общностью, распознает в сигнале признаки наличия трещины и при этомне страдает от переобучения на примерах с единственной трещиной в среде.
В работе показано, что сверточная сеть, обученная на примерах с единичной трещиной, может использоваться для обработки данных с множественными трещинами. Хорошо определяются в том числе небольшие трещины на больших глубинах, если они пространственно разнесены друг от друга на расстояние большее, чемдлина сканирующего импульса. В этом случае на сейсмограмме их волновые отклики хорошо различимы и могут быть интерпретированы нейронной сетью. В случае близко расположенных трещин могут возникать артефакты и ошибки интерпретации. Это связано с тем, что на сейсмограмме волновые отклики близких трещин сливаются, из-за чего нейронная сеть интерпретирует несколько рядом расположенных трещин как одну. Отметим, что подобную ошибку, скорее всего, допустил бы и человек при ручной интерпретации данных. В работе приведены примеры некоторых таких артефактов, искажений и ошибок распознавания.
Ключевые слова: сейсморазведка, сплошная среда, прямая задача, обратная задача, сеточно-характеристический метод, машинное обучение, нейронные сети, сверточные сети.
Detecting large fractures in geological media using convolutional neural networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.
he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.
The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.
The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.
The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.
-
Эффективная диагностика сердечно-сосудистых заболеваний с использованием композиционного глубокого обучения и техники объяснимого искусственного интеллекта
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1651-1666Сердечно-сосудистые заболевания на протяжении последних десятилетий представляют собой серьезную угрозу здоровью населения во всем мире, независимо от уровня развития страны. Ранняя диагностика и постоянный медицинский контроль могли бы значительно снизить смертность от этих заболеваний. Однако существующие системы здравоохранения зачастую не в состоянии обеспечить необходимый уровень мониторинга пациентов из-за ограниченных ресурсов.
В рамках нашего исследования мы использовали метод SHAP для объяснения работы модели глубокого обучения Bi-LSTM+CNN, разработанной для прогнозирования сердечно-сосудистых заболеваний. Путем балансировки данных и применения кросс-валидации мы достигли высокой точности (99,05%), полноты (99%) и F1-меры (99%) модели. Интерпретируемость модели, обеспечиваемая методом SHAP, повышает доверие медицинских специалистов к полученным результатам и способствует более широкому внедрению искусственного интеллекта в клиническую практику.
Ключевые слова: объяснимый ИИ, обратное исключение, REFCV, сердечно-сосудистые заболевания, здравоохранение, глубокое обучение.
Efficient diagnosis of cardiovascular disease using composite deep learning and explainable AI technique
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1651-1666During the last several decades, cardiovascular disease has surpassed all others as the leading cause of mortality in both high-income and low-income countries. The mortality rate from heart disorders may be lowered with early identification and close clinical monitoring. However, it is not feasible to adequately monitor patients every day, and 24-hour consultation with a doctor is not a feasible option, since it requires more sagacity, time, and knowledge than is currently available.
In this study, we examine the Explainable Artificial Intelligence (XAI) technique, namely, the SHAP interpretability approach, in order to educate the medical professionals about the Explainable AI (XAI) methods that can be helpful in healthcare. The XAI methods enhance the trust and understandability of both practitioners and Health Researchers in AI Models. In this work, we propose a composite Deep Learning model: Bi-LSTM+CNN model to effectively predict heart disease from patient data. After balancing the dataset, the Bi-LSTM+CNN model was used. In contrast to other studies, our proposed hybrid deep learning model produced excellent experimental results, including 99.05% accuracy, 99% precision, 99% recall, and 99% F1-score.
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
Ключевые слова: генетические алгоритмы, вариативность, многомерный анализ данных, физико-химические параметры нуклеиновых кислот, конечная геометрия.
Biomathematical system of the nucleic acids description
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 417-434The article is devoted to the application of various methods of mathematical analysis, search for patterns and studying the composition of nucleotides in DNA sequences at the genomic level. New methods of mathematical biology that made it possible to detect and visualize the hidden ordering of genetic nucleotide sequences located in the chromosomes of cells of living organisms described. The research was based on the work on algebraic biology of the doctor of physical and mathematical sciences S. V. Petukhov, who first introduced and justified new algebras and hypercomplex numerical systems describing genetic phenomena. This paper describes a new phase in the development of matrix methods in genetics for studying the properties of nucleotide sequences (and their physicochemical parameters), built on the principles of finite geometry. The aim of the study is to demonstrate the capabilities of new algorithms and discuss the discovered properties of genetic DNA and RNA molecules. The study includes three stages: parameterization, scaling, and visualization. Parametrization is the determination of the parameters taken into account, which are based on the structural and physicochemical properties of nucleotides as elementary components of the genome. Scaling plays the role of “focusing” and allows you to explore genetic structures at various scales. Visualization includes the selection of the axes of the coordinate system and the method of visual display. The algorithms presented in this work are put forward as a new toolkit for the development of research software for the analysis of long nucleotide sequences with the ability to display genomes in parametric spaces of various dimensions. One of the significant results of the study is that new criteria were obtained for the classification of the genomes of various living organisms to identify interspecific relationships. The new concept allows visually and numerically assessing the variability of the physicochemical parameters of nucleotide sequences. This concept also allows one to substantiate the relationship between the parameters of DNA and RNA molecules with fractal geometric mosaics, reveals the ordering and symmetry of polynucleotides, as well as their noise immunity. The results obtained justified the introduction of new terms: “genometry” as a methodology of computational strategies and “genometrica” as specific parameters of a particular genome or nucleotide sequence. In connection with the results obtained, biosemiotics and hierarchical levels of organization of living matter are raised.
-
Случайный лес факторов риска как прогностический инструмент неблагоприятных событий в клинической медицине
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 987-1004Целью исследования являются разработка ансамблевого метода машинного обучения, обеспечивающего построение интерпретируемых прогностических моделей, и его апробация на примере прогнозирования внутригоспитальной летальности (ВГЛ) у больных инфарктом миокарда с подъемом сегмента ST (ИМпST).
Проведено ретроспективное когортное исследование по данным 5446 электронных историй болезни пациентов с ИМпST, которым выполнялось чрескожное коронарное вмешательство (ЧКВ). Было выделено две группы лиц, первую изк оторых составили 335 (6,2%) больных, умерших в стационаре, вторую — 5111 (93,8%) — с благоприятным исходом лечения. Пул потенциальных предикторов был сформирован с помощью методов математической статистики. С помощью методов мультиметрической категоризации (минимизация p-value, максимизация площади под ROC-кривой-AUC и результаты анализа shap-value), деревьев решений и многофакторной логистической регрессии (МЛР) предикторы были преобразованы в факторы риска ВГЛ. Для разработки прогностических моделей ВГЛ использовали МЛР, случайный лес факторов риска (СЛФР), стохастический градиентный бустинг (XGboost), случай- ный лес, методы Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine и Stacking.
Авторами разработан метод СЛФР, который обобщает результаты прогноза модифицированных деревьев решений, выделяет факторы риска и ранжирует их по интенсивности влияния на вероятность развития неблагоприятного события. СЛФР позволяет разрабатывать модели с высоким прогностическим потенциалом (AUC = 0,908), сопоста- вимым с моделями CatBoost и Stacking (AUC: 0,904 и 0,908 соответственно). Метод СЛФР может рассматриваться в качестве важного инструмента для клинического обоснования результатов прогноза и стать основой для разработки высокоточных интерпретируемых моделей.
Ключевые слова: ансамблевые методы машинного обучения, факторы риска, категоризация непрерывных переменных, аддитивное объяснение Шепли, интерпретируемые модели машинного обучения.
Random forest of risk factors as a predictive tool for adverse events in clinical medicine
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 987-1004The aim of study was to develop an ensemble machine learning method for constructing interpretable predictive models and to validate it using the example of predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI).
A retrospective cohort study was conducted using data from 5446 electronic medical records of STEMI patients who underwent percutaneous coronary intervention (PCI). Patients were divided into two groups: 335 (6.2%) patients who died during hospitalization and 5111 (93.8%) patients with a favourable in-hospital outcome. A pool of potential predictors was formed using statistical methods. Through multimetric categorization (minimizing p-values, maximizing the area under the ROC curve (AUC), and SHAP value analysis), decision trees, and multivariable logistic regression (MLR), predictors were transformed into risk factors for IHM. Predictive models for IHM were developed using MLR, Random Forest Risk Factors (RandFRF), Stochastic Gradient Boosting (XGboost), Random Forest (RF), Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine and Stacking methods.
Authors developed the RandFRF method, which integrates the predictive outcomes of modified decision trees, identifies risk factors and ranks them based on their contribution to the risk of adverse outcomes. RandFRF enables the development of predictive models with high discriminative performance (AUC 0.908), comparable to models based on CatBoost and Stacking (AUC 0.904 and 0.908, respectively). In turn, risk factors provide clinicians with information on the patient’s risk group classification and the extent of their impact on the probability of IHM. The risk factors identified by RandFRF can serve not only as rationale for the prediction results but also as a basis for developing more accurate models.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




