Результаты поиска по 'движение в жидкости':
Найдено статей: 48
  1. Куликов Ю.М., Сон Э.Е.
    Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903

    В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.

    Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.

    Kulikov Y.M., Son E.E.
    CABARET scheme implementation for free shear layer modeling
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903

    In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.

    The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods

    Views (last year): 17.
  2. Селищев А.А., Цибулин В.Г.
    Компактная разностная схема для анизотропной задачи конвекции Дарси
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 199-211

    Для моделирования гравитационной конвекции жидкости, насыщающей пористую среду, развивается компактная конечно-разностная схема. На основе закона Дарси с учетом анизотропии свойств проницаемости и теплопроводности рассматривается задача для прямоугольной области в переменных «функция тока» и «температура». На границах заданы условия непроницаемости и линейный по высоте профиль температуры. При определенных соотношениях между коэффициентами обратной проницаемости и теплопроводности данная система является косимметричной, при потере устойчивости механического равновесия от него ответвляется однопараметрическое семейство стационарных конвективных режимов. Разработана численная схема с конечно-разностной аппроксимацией четвертого порядка точности по пространственным координатам и с использованием метода Рунге – Кутты. Доказано, что построенная на девятиточечном шаблоне численная схема сохраняет свойство косимметрии исходной системы. Представлены результаты численного решения спектральной задачи по определению критических чисел Рэлея, отвечающих возникновению конвективных движений. Проведено сравнение с расчетами методом второго порядка точности и на основе комбинированной разностной схемы, обеспечивающей четвертый порядок аппроксимации по вертикальной координате. Показано, что с большой точностью критические числа являются двукратными при коэффициентах, обеспечивающих свойство косимметрии. Приведены результаты вычисления конвективных режимов и спектров устойчивости стационарных решений. Дана оценка эффективности предложенной компактной схемы.

    Selischev A.A., Tsybulin V.G.
    Compact finite difference scheme for anisotropic convection Darcy
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 199-211

    A compact finite difference scheme has been developed for modeling convection in a porous medium saturated with a fluid. We consider the problem for a rectangular domain with anisotropic permeability and thermal conductivity properties in terms of stream function and temperature deviation, taking into account Darcy's law. Boundary conditions of impenetrability and a linear distribution of temperature are set. This model is cosymmetric when certain conditions are imposed on the permeability and thermal conductivities. One parametric family of stationary convection regimes arises when mechanical equilibrium loses stability. A numerical method with a fourth-order finite difference approximation for spatial variables and a Runge – Kutta integrator for time has been developed. It has been proved that this scheme preserves cosymmetry. Numerical results for evaluating the critical Rayleigh number have been presented. We compare them with results obtained using a second-order finite-difference method. We show that critical Rayleigh numbers are repeated twice with very high accuracy, which proves cosymmetry preservation. Numerical evaluation of convective regimes and spectral properties are presented. The efficiency of the developed compact finite difference scheme on a nine-point stencil is assessed.

  3. Компаниец Л.А., Гаврилова Л.В., Якубайлик Т.В.
    О модели ветрового движения двухслойной вязкой жидкости
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 381-390

    Найдено точное решение стационарной задачи ветрового движения вязкой двухслойной жидкости для двумерного в вертикальной плоскости течения и для дрейфовой составляющей трехмерного течения. На дне бассейна ставится условие проскальзывания, на вертикальных боковых стенках — условие непротекания. Приводятся примеры расчетов конкретных течений и сравнение полученных результатов с решениями аналогичной задачи по модели Экмана (без учета горизонтальной вязкости).

    Kompaniets L.A., Gavrilova L.V., Yakubailik T.V.
    On a model of wind-induced flow of two layered viscous fluid
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 381-390

    Exact solution of the stationary problem of wind-induced flow of two-layered viscous fluid is found for two-dimensional in vertical plane current and for drift current in three-dimensional case. The condition of sliding is set on the bottom of a water body. The condition of nonpassage is set on the lateral surface. Results of some calculations are given in comparison with those obtained using Ekman’s model (which does not take into account horizontal viscosity of the layer).

    Views (last year): 2.
  4. Ветчанин Е.В., Тененев В.А.
    Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381

    Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.

    Vetchanin E.V., Tenenev V.A.
    Motion control simulating in a viscous liquid of a body with variable geometry of weights
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 371-381

    Statement of a problem of management of movement of a body in a viscous liquid is given. Movement bodies it is induced by moving of internal material points. On a basis the numerical decision of the equations of movement of a body and the hydrodynamic equations approximating dependencies for viscous forces are received. With application approximations the problem of optimum control of body movement dares on the set trajectory with application of hybrid genetic algorithm. Possibility of the directed movement of a body under action is established back and forth motion of an internal point. Optimum control movement direction it is carried out by motion of other internal point on circular trajectory with variable speed.

    Views (last year): 2. Citations: 16 (RSCI).
  5. Кожевников В.С., Матюшкин И.В., Черняев Н.В.
    Анализ основного уравнения физико-статистического подхода теории надежности технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735

    Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.

    В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.

    Kozhevnikov V.S., Matyushkin I.V., Chernyaev N.V.
    Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735

    Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.

    In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.

  6. Долуденко А.Н.
    O контактных неустойчивостях вязкопластических жидкостей в трехмерной постановке задачи
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 431-444

    В работе изучаются неустойчивости Рихтмайера–Мешкова и Рэлея–Тейлора вязкопластических жидкостей (или, в частности, бингамовских жидкостей, обладающих предельным напряжением сдвига) в трехмерной постановке задачи. Анализируется развитие неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовских жидкостей при одномодовом возмущении скорости контактной границы. Анализ проводится на основе численного моделирования с использованием метода Мак-Кормака и метода объема жидкости (метода VOF — Volume of Fluid) для отслеживания контактной границы в различные моменты времени. Представлены результаты численного моделирования неустойчивостей Рихтмайера–Мешкова и Рэлея–Тейлора бингамовской жидкости и их сравнение как с теорией, так и с результатами моделирования ньютоновской жидкости. В результате проведенных численных расчетов показано, что предел текучести вязкопластической жидкости существенно влияет на характер неустойчивости как Рэлея–Тейлора, так и Рихтмайера–Мешкова: существует критическая амплитуда начального возмущения поля скорости контактной границы, при превышении которой начинается развитие неустойчивостей. Если амплитуда начального возмущения поля скорости меньше критического значения, то это возмущение относительно быстро затухает и развития неустойчивостей не происходит. При превышении начальным возмущением критической амплитуды характер развития неустойчивостей напоминает таковой у ньютоновской жидкости. При рассмотрении неустойчивости Рихтмайера–Мешкова оцениваются критические амплитуды начального возмущения поля скорости контактной границы при различных значениях предельного напряжения сдвига бингамовской жидкости. Кроме того, наблюдается отличие поведения неньютоновской жидкости при развитии неустойчивости от плоского случая: при одном и том же зна- чении предельного напряжения сдвига в трехмерной геометрии интервал значений амплитуды начального возмущения, при котором происходит переход от покоя к движению, несколько уже. Помимо этого показано, что критическая амплитуда начального возмущения контактной границы для неустойчивости Рэлея–Тейлора ниже, чем для неустойчивости Рихтмайера–Мешкова. Это объясняется действием силы тяжести, «помогающей» развитию неустойчивости и противодействующей силам вязкого трения.

    Doludenko A.N.
    On contact instabilities of viscoplastic fluids in three-dimensional setting
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 431-444

    The Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of viscoplastic (or the Bingham) fluids are studied in the three–dimensional formulation of the problem. A numerical modeling of the intermixing of two fluids with different rheology, whose densities differ twice, as a result of instabilities development process has been carried out. The development of the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities of the Bingham fluids is analyzed utilizing the MacCormack and the Volume of Fluid (VOF) methods to reconstruct the interface during the process. Both the results of numerical simulation of the named instabilities of the Bingham liquids and their comparison with theory and the results of the Newtonian fluid simulation are presented. Critical amplitude of the initial perturbation of the contact boundary velocity field at which the development of instabilities begins was estimated. This critical amplitude presents because of the yield stress exists in the Bingham fluids. Results of numerical calculations show that the yield stress of viscoplastic fluids essentially affects the nature of the development of both Rayleigh–Taylor and Richtmyer–Meshkov instabilities. If the amplitude of the initial perturbation is less than the critical value, then the perturbation decays relatively quickly, and no instability develops.When the initial perturbation exceeds the critical amplitude, the nature of the instability development resembles that of the Newtonian fluid. In a case of the Richtmyer–Meshkov instability, the critical amplitudes of the initial perturbation of the contact boundary at different values of the yield stress are estimated. There is a distinction in behavior of the non-Newtonian fluid in a plane case: with the same value of the yield stress in three-dimensional geometry, the range of the amplitude values of the initial perturbation, when fluid starts to transit from rest to motion, is significantly narrower. In addition, it is shown that the critical amplitude of the initial perturbation of the contact boundary for the Rayleigh–Taylor instability is lower than for the Richtmyer–Meshkov instability. This is due to the action of gravity, which helps the instability to develop and counteracts the forces of viscous friction.

    Views (last year): 19.
  7. Клековкин А.В., Караваев Ю.Л., Килин А.А., Назаров А.В.
    Влияние хвостовых плавников на скорость водного робота, приводимого в движение внутренними подвижными массами
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 869-882

    В данной работе представлено описание конструкции водного робота, движущегося по поверхности жидкости и приводимого в движение двумя внутренними подвижными массами. Корпус водного робота в сечении имеет форму симметричного крылового профиля с острой кромкой. На данном прототипе две внутренние массы перемещаются по окружностям и приводятся во вращение за счет одного двигателя постоянного тока и зубчатого механизма, передающего вращательный момент от двигателя к каждой массе. В качестве управляющего воздействия используются угловые скорости подвижных масс, а разработанная кинематическая схема передачи вращения от двигателя к подвижным массам позволяет реализовать вращение двух масс с равными по модулю угловыми скоростями, но при этом разным направлением вращения. А также на корпус данного робота имеется возможность устанавливать дополнительные хвостовые плавники различных форм и размеров. Также в работе для данного объекта представлены уравнения движения, записанные в форме уравнений Кирхгофа для движения твердого тела в идеальной жидкости, дополненные слагаемыми вязкого сопротивления. Представлено математическое описание дополнительных сил, действующих на гибкий хвостовой плавник. С разработанным прототипом робота проведены экспериментальные исследования по влиянию различных хвостовых плавников на скорость передвижения в жидкости. В данной работе на робота устанавливались хвостовые плавники одной формы и размеров, при этом обладающие разной жесткостью. Эксперименты проводились в бассейне с водой, над которым устанавливалась камера, на которую были получены видеозаписи всех экспериментов. Дальнейшая обработка видеозаписей позволила получить перемещения объекта, а также его линейные и угловые скорости. В работе показано различие в развиваемых роботом скоростях при движении без хвостового плавника, а также с хвостовыми плавниками, имеющими разную жесткость. Приведено сравнение развиваемых роботом скоростей, полученных в экспериментальных исследованиях, с результатами математического моделирования системы.

    Klekovkin A.V., Karavaev Y.L., Kilin A.A., Nazarov A.V.
    The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882

    This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.

  8. Попова А.А., Попов В.С.
    Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600

    В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.

    Popova A.A., Popov V.S.
    Modeling of nonlinear aeroelastic oscillations of a channel wall interacting with a pulsating viscous gas layer
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 583-600

    The mathematical model for aeroelastic oscillations of a narrow channel wall with a nonlinear-elastic suspension and interacting with a pulsating viscous gas layer is proposed. Within the framework of this model, the aeroelastic response of the channel wall and its phase response were determined and investigated. The authors simultaneously studied the influence of the nonlinear stiffness elastic suspension of the wall, compressibility and dissipative properties of gas, as well as the inertia of its motion on the wall oscillations. The model was elaborated based on the formulation and solution of the initial boundary-value plane problem of mathematical physics. The problem governing equations include the equations of dynamics for barotropic viscous gas, equation of dynamics for the rigid wall as the spring-mass nonlinear oscillator. Using the perturbation method, the asymptotic analysis of the problem was carried out. The solution of the equations of dynamics for the thin layer of viscous gas was obtained by the iteration method. As a result, the law of gas pressure distribution in the channel was determined and the initial problem of aeroelasticity was reduced to the study of the generalized Duffing equation. Its solution was realized by the harmonic balance method, which allowed us to determine the aeroelastic and phase responses of the channel wall in the form of implicit functions. The numerical study of these responses was carried out to evaluate the influence for inertia of gas motion and its compressibility, as well as a comparison of the results obtained with the special cases of creeping motion of viscous gas and incompressible viscous fluid. The results of this study have shown the importance of simultaneous consideration of compressibility and inertia of viscous gas motion when modeling aeroelastic oscillations of the considered channel wall.

  9. Minkov L., Dueck J.
    CFD-modeling of a flow in a hydrocyclone with an additional water injector
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 63-76

    The paper is an example of computer simulation in mechanical engineering. Velocity field in a hydrocyclone are determined numerically, because for direct measurements it is difficult to achieve them. The numerical simulation of 3D fluid dynamics based on the k-eps RNG model of turbulence in the hydrocyclone with the injector, containing 5 tangentially directed nozzles is considered. It is shown that the direction of movement of
    injected fluid in the hydrocyclone depends on the water flow rate through the injector. The calculations show in accordance with the experiments that the dependence of the Split-parameter on the injected water flow rate has a non-monotone character associated with the ratio of power of the main flow and the injected fluid.

    Ключевые слова: hydrocyclone, injection, computational fluid dynamics.
    Миньков Л.Л., Дик И.Г.
    Моделирование течения в гидроциклоне с дополнительным инжектором
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 63-76

    Статья представляет собой пример компьютерного моделирования в области инженерной механики. Численным методом находятся поля скорости в гидроциклоне, которые недоступны прямому измерению. Рассматривается численное моделирование трехмерной гидродинамики на основе k-ε RNG модели турбулентности в гидроциклоне со встроенным инжектором, содержащим 5 тангенциально направленных сопла. Показано, что направление движения инжектируемой жидкости зависит от расхода жидкости через инжектор. Расчеты показывают в соответствии с экспериментами, что зависимость сплит-параметра от расхода инжектируемой жидкости имеет немонотонный характер, связанный с отношением мощности основного потока и инжектируемой жидкости.

    Views (last year): 2. Citations: 5 (RSCI).
  10. Килин А.А., Кленов А.И., Тененев В.А.
    Управление движением тела с помощью внутренних масс в вязкой жидкости
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 445-460

    Данная статья посвящена изучению самопродвижения тел в жидкости за счет действия внутренних механизмов, без изменения внешней формы тела. В работе представлен обзор теоретических работ, обосновывающих возможностьда нного перемещения в идеальной и вязкой жидкостях.

    Рассмотрен частный случай самопродвижения твердого тела по поверхности жидкости за счет движения двух внутренних масс по окружностям. В работе представлена математическая модельдвиж ения твердого тела с подвижными внутренними массами в трехмерной постановке. Данная модельу читывает трехмерные колебания тела при движении, возникающие под действием внешних сил — силы тяжести, силы Архимеда и сил, действующих на тело со стороны вязкой жидкости.

    В качестве тела рассмотрен однородный эллиптический цилиндр с килем, расположенным вдоль большей диагонали. Внутри цилиндра расположены две материальные точечные массы, перемещающиеся по окружностям. Центры окружностей лежат на наименьшей диагонали эллипса на равном удалении от центра масс.

    Уравнения движения рассматриваемой системы (тело с двумя материальными точками, помещенное в жидкость) представлены в виде уравнений Кирхгофа с добавлением внешних сил и моментов, действующих на тело. Для описания сил сопротивления движению в жидкости выбрана феноменологическая модель вязкого трения, квадратичная по скорости. Коэффициенты сопротивления движению, используемые в модели, определялись экспериментально. Силы, действующие на киль, определялись с помощью численного моделирования колебаний киля в вязкой жидкости с использованием уравнений Навье–Стокса.

    В данной работе была проведена экспериментальная проверка предложенной математической модели. Представлено несколько серий экспериментов по самопродвижению тела в жидкости с помощью вращения внутренних масс с разными скоростями вращения. Исследована зависимостьс редней скорости продвижения, размаха поперечных колебаний в зависимости от частоты вращения внутренних масс. Проведено сравнение полученных экспериментальных данных с результатами, полученными в рамках предложенной математической модели.

    Kilin A.A., Klenov A.I., Tenenev V.A.
    Controlling the movement of the body using internal masses in a viscous liquid
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460

    This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.

    A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.

    The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.

    Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.

    In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.

    Views (last year): 21. Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"