All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.
Ключевые слова: оптимальное управление, уравнения движения, уравнения Навье–Стокса, численные методы, нечеткие деревья решений, генетический алгоритм.
Motion control simulating in a viscous liquid of a body with variable geometry of weights
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 371-381Views (last year): 2. Citations: 16 (RSCI).Statement of a problem of management of movement of a body in a viscous liquid is given. Movement bodies it is induced by moving of internal material points. On a basis the numerical decision of the equations of movement of a body and the hydrodynamic equations approximating dependencies for viscous forces are received. With application approximations the problem of optimum control of body movement dares on the set trajectory with application of hybrid genetic algorithm. Possibility of the directed movement of a body under action is established back and forth motion of an internal point. Optimum control movement direction it is carried out by motion of other internal point on circular trajectory with variable speed.
-
Модели нейронных сетей для анализа изображений с БПЛА при дистанционном лесопатологическом мониторинге хвойных лесов
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 641-663Рассмотрены основные задачи дистанционного лесопатологического мониторинга пораженных насекомыми-вредителями хвойных лесов. Показано, что при их решении необходимо использовать результаты мультиклассификации хвойных деревьев на изображениях высокого и сверхвысокого разрешения, оперативно получаемых при мониторинге путем съемки лесов с космических аппаратов или с беспилотных летательных аппаратов (БПЛА). Проведен аналитический обзор современных моделей и методов мультиклассификации изображений хвойных лесов и с учетом его результатов разработаны три модели полносверточных нейронных сетей Mo-U-Net, At-Mo-U-Net и Res-Mo-U-Net, основанные на классической модели U-Net, а также модифицирована модель трансформера Segformer. По RGB-изображениям поврежденных уссурийским полиграфом Polygraphus proximus деревьев пихты сибирской Abies sibirica, полученных с помощью фотокамеры на БПЛА, созданы два набора датасетов: первый набор включает фрагменты изображений и их эталонных масок сегментации размером 256 × 256 × 3 пикселей, а второй — фрагменты размером 480 × 480 × 3 пикселей. Проведены комплексные исследования каждой из обученных моделей нейросетей по точности классификации степени поражения (состояния здоровья) деревьев A. Sibirica на изображениях и по скорости вычисления моделей с использованием тестовых датасетов из каждого набора. Выявлено, что в случае фрагментов размером 256×256×3 пикселей предпочтение наряду с моделью Modified Segformer следует отдать модели с механизмом внимания At-Mo-U-Net, а в случае фрагментов размером 480 × 480 × 3 пикселей — гибридной модели с остаточными блоками Res-Mo-U-Net. Из результатов исследований точности классификации и скорости вычислений каждой из разработанных моделей сделан вывод о том, что при решении задачи мультиклассификации пораженных деревьев пихты в производственных масштабах предпочтение следует отдать модели Res-Mo-U-Net. Именно она является компромиссным вариантом, удовлетворяющим противоречащим друг другу требованиям высокой точности классификации деревьев на изображениях и высокой скорости вычислений модели.
Ключевые слова: патологический мониторинг хвойных лесов, беспилотный летательный аппарат, стволовой вредитель уссурийский полиграф Polygraphus proximus, мультиклассификация изображений деревьев пихты сибирской Abies sibirica, полносверточная нейронная сеть, трансформер.
Advanced neural network models for UAV-based image analysis in remote pathology monitoring of coniferous forests
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 641-663The key problems of remote forest pathology monitoring for coniferous forests affected by insect pests have been analyzed. It has been demonstrated that addressing these tasks requires the use of multiclass classification results for coniferous trees in high- and ultra-high-resolution images, which are promptly obtained through monitoring via satellites or unmanned aerial vehicles (UAVs). An analytical review of modern models and methods for multiclass classification of coniferous forest images was conducted, leading to the development of three fully convolutional neural network models: Mo-U-Net, At-Mo-U-Net, and Res-Mo-U-Net, all based on the classical U-Net architecture. Additionally, the Segformer transformer model was modified to suit the task. For RGB images of fir trees Abies sibirica affected by the four-eyed bark beetle Polygraphus proximus, captured using a UAV-mounted camera, two datasets were created: the first dataset contains image fragments and their corresponding reference segmentation masks sized 256 × 256 × 3 pixels, while the second dataset contains fragments sized 480 × 480 × 3 pixels. Comprehensive studies were conducted on each trained neural network model to evaluate both classification accuracy for assessing the degree of damage (health status) of Abies sibirica trees and computation speed using test datasets from each set. The results revealed that for fragments sized 256 × 256 × 3 pixels, the At-Mo-U-Net model with an attention mechanism is preferred alongside the Modified Segformer model. For fragments sized 480 × 480 × 3 pixels, the Res-Mo-U-Net hybrid model with residual blocks demonstrated superior performance. Based on classification accuracy and computation speed results for each developed model, it was concluded that, for production-scale multiclass classification of affected fir trees, the Res-Mo-U-Net model is the most suitable choice. This model strikes a balance between high classification accuracy and fast computation speed, meeting conflicting requirements effectively.
-
Оптимизация размера классификатора при сегментации трехмерных точечных образов древесной растительности
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 665-675Появление технологий лазерного сканирования произвело настоящую революцию в лесном хозяйстве. Их использование позволило перейти от изучения лесных массивов с помощью ручных измерений к компьютерному анализу точечных стереоизображений, называемых облаками точек.
Автоматическое вычисление некоторых параметров деревьев (таких как диаметр ствола) по облаку точек требует удаления точек листвы. Для выполнения этой операции необходима предварительная сегментация стереоизображения на классы «листва» и «ствол». Решение этой задачи зачастую включает использование методов машинного обучения.
Одним из самых популярных классификаторов, используемых для сегментации стереоизображений деревьев, является случайный лес. Этот классификатор достаточно требователен к объему памяти. В то же время размер модели машинного обучения может быть критичным при необходимости ее пересылки, что требуется, например, при выполнении распределенного обучения. В данной работе ставится цель найти классификатор, который был бы менее требовательным по памяти, но при этом имел бы сравнимую точность сегментации. Поиск выполняется среди таких классификаторов, как логистическая регрессия, наивный байесовский классификатор и решающее дерево. Кроме того, исследуется способ уточнения сегментации, выполненной решающим деревом, с помощью логистической регрессии.
Эксперименты проводились на данных из коллекции университета Гейдельберга. Было показано, что классификация с помощью решающего дерева, корректируемая с помощью логистической регрессии, способна давать результат, лишь немного проигрывающий результату случайного леса по точности, затрачивая при этом меньше времени и оперативной памяти. Разница в сбалансированной точности составляет не более процента на всех рассмотренных облаках, при этом суммарный размер и время предсказания классификаторов решающего дерева и логистической регрессии на порядок меньше, чем у случайного леса.
Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.
Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.
One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.
The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.
It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.
-
Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.
Ключевые слова: анализ текста, обработка естественного языка, активность в Twitter, ча- стотный анализ, отбор признаков, задача классификации, финансовые рынки, бенчмарк, случайный лес, решающие деревья.
Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
Ключевые слова: машинное обучение, распознавание жестов, человеко-машинный интерфейс, электромиография, ансамбль методов, градиентный бустинг, метод $k$-ближайших соседей, дерево решений.
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




