All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Математическое моделирование механизма дифференциации репродуктивных стратегий в естественных популяциях (на примере песцов, Alopex lagopus)
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 213-228В работе рассматривается комплексный подход к моделированию динамики генетической структуры и численности естественной популяции. Набор динамических моделей с различными типами естественного отбора применен для описания возможного механизма закрепления наблюдаемого в настоящее время генетического разнообразия по размеру помета в прибрежных, континентальных и искусственных популяциях песцов (Alopex lagopus, семейство Canidae, порядок Carnivora). Наиболее интересные результаты удалось получить на основе модели популяции, включающей две стадии развития; при этом анализировалась динамика генетической структуры популяции по генотипам, соответствующим различным репродуктивным способностям и выживаемостям детенышей на ранней стадии жизненного цикла, определяемым одним диаллельным геном. Эта модель позволяет получить мономорфизм по рассматриваемому признаку в популяциях прибрежных песцов, где пищевые ресурсы практически постоянны, и установление полиморфизма с циклическими колебаниями численности и частот аллелей рассматриваемого гена в континентальных популяциях, где происходят регулярные всплески численности грызунов — основного компонента пищи. В искусственных популяциях в результате селективного отбора, осуществляемого фермерами с целью увеличения репродуктивного успеха производителей, рассматриваемый ген оказывается плейотропным (т. е. определяющим выживаемость особей как на ранней, так и на поздней стадии жизненного цикла); применение соответствующей модели (с отбором по плейотропныму гену) позволяет получить адекватную скорость вытеснения аллеля, обуславливающего производство пометов малого размера.
Mathematical modeling of the mechanism of a reproductive strategies differentiation in natural populations (on the example of arctic fox, Alopex lagopus)
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 213-228Views (last year): 7. Citations: 5 (RSCI).This paper considers the integrated approach to modeling the dynamics of genetic structure and the number of natural population. A set of dynamic models with different types of natural selection is used to describe a possible mechanism for the fixing of a genetic diversity in size of the litter in coastal, continental and farmed populations of arctic fox (Alopex lagopus, Canidae, Carnivora) observed now. The most interesting results have been obtained with the model of population consisting of two stages of development. At that with the frame of this model a dynamics of population genetic structure on genotypes was analyzed to consider different reproductive abilities and fitnesses of pups on the early stage of lifecycle which defined by the single diallelic gene. This model allows to receive a monomorphism for coastal populations of arctic fox, where food resources are practically constant. As well the model allows polymorphism with cyclical fluctuations in the number and frequency of the gene in the continental populations due to regular fluctuating of rodent number, the major component of its food. In farmed populations by selective selection carried out by farmers to increase the reproductive success, this gene is a pleiotropic one (i. e., determining the survival rate of individuals both early and late stages of their life cycle); so an application of appropriate model (with the selection of pleiotropic gene) allows to get an adequate rate of elimination for small litters allele.
-
Математическая модель озерного сообщества с учетом целочисленности размера популяции: хаотические и долгопериодные колебания
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 229-239В работе представлены результаты исследования целочисленной модели водного сообщества, состоящего из популяций зоопланктона, мирной и хищной рыбы. Рассматривается структура популяции гидробионтов по массе и по возрасту, а также описываются соответствующие такой структуре трофические взаимодействия между популяциями. Модель воспроизводит различные динамические режимы: стационарные и колебательные. Колебания численности рыбных популяций при этом могут быть регулярными и нерегулярными. Показано, что период регулярных колебаний может составлять десятки лет, а нерегулярные колебания численности рыбных популяций могут быть как хаотическими, так и нехаотическими. В результате анализа модели в пространстве параметров показано, что предсказуемость динамики рыбных популяций может быть затруднена не только в результате возникновения динамического хаоса, но и в результате конкуренции между различными динамическими режимами, возникающей при вариации параметров модели, в частности при изменениях скорости роста зоопланктона.
Ключевые слова: математическое моделирование водного сообщества, целочисленное моделирование, долгопериодические колебания, хаос.
An integer-valued mathematical model of lake communities: Chaotic and long-period oscillations in the fish population size
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 229-239Views (last year): 6.We present the results of a mathematical model for the aquatic communities which include zooplankton, planktivorous fish and predator fish. The aquatic populations are considered to be body mass- and agestructured, while the trophic relations between the populations to be correspondingly status-specific. The model reproduces diverse dynamic regimes as such steady states and oscillations in the population size. Oscillations in the fish population size are shown to be both regular and irregular. We show that the period of the regular oscillations can be up to decades. The irregular oscillations are shown to be both chaotic and non-chaotic. Analyzing the dynamics in the model parameter space has enabled us to conclude that predictability of fish population dynamics can face difficulties both due to dynamical chaos and to the competition between various dynamical regimes caused by variations in the model parameters, specifically in the zooplankton growth rate.
-
Моделирование рисков воздействия насекомых на лесные насаждения при возможных климатических изменениях
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 241-253Модель динамики численности популяций лесных насекомых использована для моделирования взаимодействий «лес–насекомые» и оценки возможных повреждений лесных насаждений насекомыми-вредителями. Согласно этой модели популяция рассматривалась как система автоматической регуляции, в которой входные переменные характеризуют влияние модифицирующих (прежде всего климатических) факторов, а цепи обратной связи описывают влияние регулирующих факторов (паразитов и хищников, внутрипопуляционных взаимодействий). На основе этой модели популяционной динамики предложена методика стресс-тестирования — оценки рисков повреждений и гибели лесных насаждений по отношению к вспышкам массового размножения насекомых. Такой опасный вид лесных вредителей, как сосновая пяденица (Bupalus piniarius L.), рассматривался в качестве объекта анализа; проводились компьютерные эксперименты по оценке рисков возникновения вспышек массового размножения при возможных климатических изменениях на территории Средней Сибири. Модельные эксперименты по- казали, что при достаточно умеренном потеплении (не более 4 °С в летний период) риск воздействия насекомых на лес существенно не возрастает. Однако более сильное потепление на территории Средней Сибири в сочетании с уменьшением количества осадков в летний период может вызвать существенное увеличение частоты вспышек массового размножения основного вредителя сосновых лесов — сосновой пяденицы.
Ключевые слова: лесные насекомые, динамика численности, модели, модифицирующие факторы, климат, насаждения, воздействие, риски, стресс-тесты.
Modelling the risk of insect impacts on forest stands after possible climate changes
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 241-253A model of forest insect population dynamics used to simulate of “forest-insect” interactions and for estimation of possible damages of forest stand by pests. This model represented a population as control system where the input variables characterized the influence of modifier (climatic) factors and the feedback loop describes the effect of regulatory factors (parasites, predators and population interactions). The technique of stress testing on the basis of population dynamics model proposed for assessment of the risks of forest stand damage and destruction after insect impact. The dangerous forest pest pine looper Bupalus piniarius L. considered as the object of analysis. Computer experiments were conducted to assess of outbreak risks with possible climate change in the territory of Central Siberia. Model experiments have shown that risk of insect impact on the forest is not increased significantly in condition of sufficiently moderate warming (not more than 4 °C in summer period). However, a stronger warming in the territory of Central Siberia, combined with a dry summer condition could cause a significant increase in the risk of pine looper outbreaks.
Keywords: forest insect, population dynamics, models, modified factors, climate, stands, impact, risks, stresstesting.Views (last year): 3. Citations: 1 (RSCI). -
Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.
Ключевые слова: популяционная динамика, случайные возмущения, функция стохастической чувствительности, доверительные области.
Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660Views (last year): 14. Citations: 4 (RSCI).The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.
-
Дискретные модели популяционной динамики: достоинства, проблемы и обоснование
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 267-284Работа посвящена анализу достоинств, недостатков и обоснований применимости дискретных моделей в динамике популяций. Под дискретизацией в общем смысле понимается замена непрерывных величин их дискретными аналогами, то есть сведение задачи от непрерывных к перечислимым множествам. Рассмотрены прецеденты использования временной, пространственной и структурной дискретизации в типичных задачах математической экологии и совершена попытка оценить степень адекватности и границы применимости соответствующих моделей.
Ключевые слова: дискретные модели, дискретизация, уравнение Ферхюльста, динамика популяций, математическая экология, агентный подход.
Discrete Models in Population Dynamics: Advantages, Problems, and Justification
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 267-284Views (last year): 6. Citations: 6 (RSCI).This article is dedicated to applicability justification as well as advantages and disadvantages analysis of discrete models in population dynamics. Discretization is the process of transferring continuous functions, models, and equations into discrete counterparts. We consider how temporal, spatial and structural discretization can be applied for solving typical issues in mathematical ecology, and try to estimate corresponding models adequacy and applicability limitations.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




