All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Флуоресценция молекулярного зонда и его диффузия в биологической жидкости
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 201-208В статье представлены результаты теоретических исследований диффузии молекулярного зонда в биологической жидкости и её влияние на спектры флуоресценции. Рассматривается случай с введением вещества в биологическую жидкость на примере инъекции. Показано, что смещение спектра флуоресценции введенного зонда относительно его спектра флуоресценции в буферном растворе является результатом диффузионных процессов в биологической жидкости и иммобилизации зонда в содержащиеся в ней структуры (вещества белковой природы, различные виды клеток и прочие).
Fluorescence of molecular probe and its diffusion in a biological liquid
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 201-208Views (last year): 2. Citations: 3 (RSCI).The results of theoretical researches of molecular probe diffusion as well as its impact to probe fluorescence spectra are represented in this paper. The case with compound introduction to biological liquid as an injection has been considered. Shown, fluorescence spectra shifts of injected probe is a result of diffusion processes in biological liquid as well as its immobilization to contained structures (compound of peptides nature, different cell types and others).
-
Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067Рассматривается возможность численного 3D-моделирования образования тромбов.
Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.
Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.
Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.
Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.
Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.
При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.
Ключевые слова: гемодинамика, тромб, тромбин, тромбоцит, фибрин, артерия, вена, численное моделирование, вычислительная гидродинамика (ВГД), уравнения Навье – Стокса, уравнения «реакция – диффузия – конвекция», неньютоновская жидкость, метод конечных объемов.
Reduced mathematical model of blood coagulation taking into account thrombin activity switching as a basis for estimation of hemodynamic effects and its implementation in FlowVision package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1039-1067The possibility of numerical 3D simulation of thrombi formation is considered.
The developed up to now detailed mathematical models describing formation of thrombi and clots include a great number of equations. Being implemented in a CFD code, the detailed mathematical models require essential computer resources for simulation of the thrombi growth in a blood flow. A reasonable alternative way is using reduced mathematical models. Two models based on the reduced mathematical model for the thrombin generation are described in the given paper.
The first model describes growth of a thrombus in a great vessel (artery). The artery flows are essentially unsteady. They are characterized by pulse waves. The blood velocity here is high compared to that in the vein tree. The reduced model for the thrombin generation and the thrombus growth in an artery is relatively simple. The processes accompanying the thrombin generation in arteries are well described by the zero-order approximation.
A vein flow is characterized lower velocity value, lower gradients, and lower shear stresses. In order to simulate the thrombin generation in veins, a more complex system of equations has to be solved. The model must allow for all the non-linear terms in the right-hand sides of the equations.
The simulation is carried out in the industrial software FlowVision.
The performed numerical investigations have shown the suitability of the reduced models for simulation of thrombin generation and thrombus growth. The calculations demonstrate formation of the recirculation zone behind a thrombus. The concentration of thrombin and the mass fraction of activated platelets are maximum here. Formation of such a zone causes slow growth of the thrombus downstream. At the upwind part of the thrombus, the concentration of activated platelets is low, and the upstream thrombus growth is negligible.
When the blood flow variation during a hart cycle is taken into account, the thrombus growth proceeds substantially slower compared to the results obtained under the assumption of constant (averaged over a hard cycle) conditions. Thrombin and activated platelets produced during diastole are quickly carried away by the blood flow during systole. Account of non-Newtonian rheology of blood noticeably affects the results.
-
Пространственно-временные модели распространения информационно-коммуникационных технологий
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.
Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.
Ключевые слова: диффузия инноваций, бегущая волна, пространственно-временная модель, мобильная связь, информационно-коммуникационные технологии.
Spatio-temporal models of ICT diffusion
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.
The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




