Результаты поиска по 'метод аналогий':
Найдено статей: 52
  1. Стонякин Ф.С., Степанов А.Н., Гасников А.В., Титов А.А.
    Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317

    В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.

    Stonyakin F.S., Stepanov A.N., Gasnikov A.V., Titov A.A.
    Mirror descent for constrained optimization problems with large subgradient values of functional constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317

    The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.

  2. Кожевников В.С., Матюшкин И.В., Черняев Н.В.
    Анализ основного уравнения физико-статистического подхода теории надежности технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735

    Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.

    В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.

    Kozhevnikov V.S., Matyushkin I.V., Chernyaev N.V.
    Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735

    Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.

    In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.

  3. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

    Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  4. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

    Potapov D.I., Potapov I.I.
    Bank slope evolution in trapezoidal channel riverbed
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 581-592

    A mathematical model is formulated for the coastal slope erosion of sandy channel, which occurs under the action of a passing flood wave. The moving boundaries of the computational domain — the bottom surface and the free surface of the hydrodynamic flow — are determined from the solution of auxiliary differential equations. A change in the hydrodynamic flow section area for a given law of change in the flow rate requires a change in time of the turbulent viscosity averaged over the section. The bottom surface movement is determined from the Exner equation solution together with the equation of the bottom material avalanche movement. The Exner equation is closed by the original analytical model of traction loads movement. The model takes into account transit, gravitational and pressure mechanisms of bottom material movement and does not contain phenomenological parameters.

    Based on the finite element method, a discrete analogue of the formulated problem is obtained and an algorithm for its solution is proposed. An algorithm feature is control of the free surface movement influence of the flow and the flow rate on the process of determining the flow turbulent viscosity. Numerical calculations have been carried out, demonstrating qualitative and quantitative influence of these features on the determining process of the flow turbulent viscosity and the channel bank slope erosion.

    Data comparison on bank deformations obtained as a result of numerical calculations with known flume experimental data showed their agreement.

  5. Садин Д.В.
    Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772

    Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.

    Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.

    Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.

    Sadin D.V.
    Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772

    We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.

    The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.

    Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.

  6. Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.

    В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\varepsilon_\rho$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\varepsilon_\rho$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.

    Сопоставление функций $\varepsilon_\rho$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.

    Reshetnikova O.V.
    The model sound speed determination for the plane shear fluid flow problem solving by the SPH method
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 339-351

    The problem discrete statement by the smoothed particle hydrodynamics method (SPH) include a discretization constants parameters set. Of them particular note is the model sound speed $c_0$, which relates the SPH-particle instantaneous density to the resulting pressure through the equation of state.

    The paper describes an approach to the exact determination of the model sound speed required value. It is on the analysis based, how SPH-particle density changes with their relative shift. An example of the continuous medium motion taken the plane shear flow problem; the analysis object is the relative compaction function $\varepsilon_\rho$ in the SPH-particle. For various smoothing kernels was research the functions of $\varepsilon_\rho$, that allowed the pulsating nature of the pressures occurrence in particles to establish. Also the neighbors uniform distribution in the smoothing domain was determined, at which shaping the maximum of compaction in the particle.

    Through comparison the function $\varepsilon_\rho$ with the SPH-approximation of motion equation is defined associate the discretization parameter $c_0$ with the smoothing kernel shape and other problem parameters. As a result, an equation is formulated that the necessary and sufficient model sound speed value provides finding. For such equation the expressions of root $c_0$ are given for three different smoothing kernels, that simplified from polynomials to numerical coefficients for the plane shear flow problem parameters.

  7. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  8. Орлинский Е.П., Сорокоумов П.С., Павлов Д.М., Куземкин М.В.
    Моделирование формирований роботов, движущихся в водной среде
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 601-620

    Групповое движение малоразмерных подводных аппаратов — важная прикладная задача. В работе приводятся результаты исследования влияния формации группы на характер ее движения. Оценка лобового сопротивления подводных аппаратов и обтекания потоков вокруг них — традиционная и хорошо известная область исследований. Однако выводы, сделанные для единичного робота, не всегда применимы к группе однотипных устройств из-за появляющихся при совместном движении физических эффектов, например волновой тени. Исходя из этого были исследованы гидродинамические характеристики определенных формаций роботов, движущихся как единое целое. В ходе работы изучались гидродинамические параметры систем с двумя основными типами движителей: локомоторными (аналогами рыбьих хвостов) и гребными винтами. Из соображений природоподобия рассматривались формации, аналогичные по структуре рыбьим косякам, затем оценивалась их применимость для роботов разных видов. Была определена связь между скоростью движения группировки и лобовым сопротивлением каждого из ее участников. Математическое моделирование обтекания группировки роботов проводилось при помощи метода конечных объемов двумя программными комплексами (FlowVision и OpenFoam). Показано, что роботы с винтовым движителем при размещении в тесных формациях мешают друг другу, а для локомоторного случая нахождение в зоне возмущения, наоборот, предпочтительно. Также при плохо обтекаемых корпусах отрывающиеся от поверхности потоки могут превращаться в узкие струи, сильно мешающие задним роботам. Установлено, что эффект водяной тени снижает затраты энергии только при малых скоростях движения — около 5 см/с; при больших скоростях движение в колоннах затрудняется для задних роботов. Кроме того, для рыбоподобного движителя не было выявлено большой разницы в лобовом сопротивлении между одиночным роботом и группой. Таким образом, программное моделирование позволило выработать и обосновать рекомендации по оптимизации построений роботов при групповом движении. Полученные результаты могут оказаться полезными для разработки подводных аппаратов, способных работать в группах, и средств управления ими.

    Orlinsky E.P., Sorokoumov P.S., Pavlov D.M., Kuzemkin M.V.
    Modeling formations of robots moving in an aquatic environment
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 601-620

    The objective of this study is to determine the best formations for the joint movement of a group of small robots in an aquatic environment. Estimation of drag of the flow is a traditional and well-known area of research, but it is not always valid to extend the conclusions made for a single robot to a group of similar devices due to the physical effects that appear during joint movement, such as a wave shadow. For these reasons, it is necessary to study the hydrodynamic characteristics of certain robot formations as a stable structure. The hydrodynamic parameters of systems with two main types of propulsion were studied: locomotive (fishtails) and propellers. Formations similar in structure to schools of fish were mainly considered, and then their applicability for robots of different types was assessed. The relationship between the speed of movement of the group and the drag of each of its participants was also studied. Mathematical modeling of the flow around a group of robots was performed using the finite volume method using two software packages (FlowVision and OpenFoam). Robots with a screw propeller interfere with each other when packed into tight formations, and for the locomotive case, being in the disturbance zone, on the contrary, is preferable. Also, with poorly streamlined bodies, flows separating from the surface can turn into narrow turbulent jets that greatly interfere with the rear robots. It has been established that wake effect reduces energy costs only at low speeds of movement — about 5 cm/s; at high speeds, movement in columns becomes difficult for the rear robots. No large difference in frontal resistance was found between a single robot and a group for a fish-like tail. The studies made it possible to develop and substantiate recommendations for optimizing robot designs for group movement.

  9. Батгэрэл Б., Земляная Е.В., Пузынин И.В.
    Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324

    Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.

    Batgerel B., Zemlyanay E.V., Puzynin I.V.
    NINE: computer code for numerical solution of the boundary problems for nonlinear differential equations on the basis of CANM
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 315-324

    The computer code NINE (Newtonian Iteration for Nonlinear Equation) for numerical solution of the boundary problems for nonlinear differential equations on the basis of continuous analogue of the Newton method (CANM) is presented. Numerov’s finite-difference appproximation is applied to provide the fourth accuracy order with respect to the discretization stepsize. Algorithms of calculating the Newtonian iterative parameter are discussed. A convergence of iteration process in dependence on choice of the iteration parameter has been studied. Results of numerical investigation of the particle-like solutions of the scalar field equation are given.

    Views (last year): 1. Citations: 1 (RSCI).
  10. Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.

    Grachev V.A., Nayshtut Yu.S.
    Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432

    This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.

    Citations: 2 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"