All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Программа NINE: численное решение граничных задач для нелинейных дифференциальных уравнений методом НАМН
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 315-324Представлена программа NINE (Newtonian Iteration for Nonlinear Equation) численного решения граничных задач для нелинейных дифференциальных уравнений второго порядка на основе непрерывного аналога метода Ньютона (НАМН) с использованием нумеровской конечно-разностной аппроксимации четвертого порядка относительно шага дискретизации по пространственной переменной. Обсуждаются алгоритмы вычисления ньютоновского итерационного параметра. Выполнены методические расчеты, демонстрирующие влияние выбора итерационного параметра на сходимость итерационного процесса. Представлены результаты проведенного с помощью программы NINE численного исследования положительных частицеподобных решений уравнения скалярного поля.
Ключевые слова: нелинейные дифференциальные уравнения, непрерывный аналог метода Ньютона, конечно-разностная аппроксимация.
NINE: computer code for numerical solution of the boundary problems for nonlinear differential equations on the basis of CANM
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 315-324Views (last year): 1. Citations: 1 (RSCI).The computer code NINE (Newtonian Iteration for Nonlinear Equation) for numerical solution of the boundary problems for nonlinear differential equations on the basis of continuous analogue of the Newton method (CANM) is presented. Numerov’s finite-difference appproximation is applied to provide the fourth accuracy order with respect to the discretization stepsize. Algorithms of calculating the Newtonian iterative parameter are discussed. A convergence of iteration process in dependence on choice of the iteration parameter has been studied. Results of numerical investigation of the particle-like solutions of the scalar field equation are given.
-
Теоремы о предельной нагрузке для жесткопластических сплошных сред с внутренними степенями свободы и их приложение к континуальным сетчатым оболочкам
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 423-432Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.
Ключевые слова: жесткопластическая среда, репер Картана, определяющие уравнения, предельная нагрузка, память формы, оболочки вращения.
Ultimate load theorems for rigid plastic solids with internal degrees of freedom and their application in continual lattice shells
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 423-432Citations: 2 (RSCI).This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating shells under external forces and in case of shape recovery from heating.
-
О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.
В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.
Ключевые слова: выпуклая оптимизация, стохастическая оптимизация, регуляризация, острый минимум, условие квадратичного роста, метод Монте-Карло.
On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.
In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.
-
Математическое моделирование теплофизических процессов в стенке кисты Бейкера, при нагреве внутрикистозной жидкости лазерным излучением длиной волны 1.47 мкм
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 103-112Работа посвящена теоретическому изучению величины деструктивного влияния на нормальные ткани организма инфракрасным излучением, выходящим за пределы обрабатываемого патологического очага. Такая ситуация возможна при сверхдлительном воздействии прямого лазерного излучения на биоткани. Решением этой проблемы может служить равномерное распределение тепла внутри объема через опосредованное нагревание жидкости, что способствует минимальному повреждению перифокальных структур. Представлена нестационарная теплофизическая модель процесса распространения тепла в биотканях, позволяющая проводить исследования передачи энергии от внутреннего жидкого содержимого кисты Бейкера, нагреваемого инфракрасным лазерным излучением заданной удельной мощности, через определенную толщину ее стенки к окружающим биологическим тканям. Расчет пространственно-временного распределения температуры в стенке кисты и окружающей жировой ткани осуществляется конечно-разностным методом. Время эффективного воздействия температуры на всю толщину стенки кисты оценивалось достижением 55 °С на ее наружной поверхности. Безопасность процедуры обеспечивает длительность экспозиции данной величины не более 10 секунд.
В результате проведенных вычислений установлено, что имеются несколько режимов работы хирургического лазера, соответствующих всем требованиям безопасности при одновременной эффективности процедуры. Локальная односторонняя гипертермия синовиальной оболочки и последующая коагуляция всей толщины стенки за счет переноса тепла способствуют ликвидации полостного новообразования подколенной области. При ее толщине 3 мм удовлетворительным является режим нагрева, при котором время воздействия длится около 200 секунд, а удельная мощность лазерного излучения во внутренней среде жидкостного содержимого кисты Бейкера составляет примерно 1 Вт/г.
Ключевые слова: математическая аналогия, биологическая ткань, теплопередача, теплоемкость, киста Бейкера, моделирование процесса, термокоагуляция.
Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112Views (last year): 21. Citations: 2 (RSCI).The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.
As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.
-
Модель установившегося течения реки в поперечном сечении изогнутого русла
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.
Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.
Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.
Model of steady river flow in the cross section of a curved channel
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.
To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Ключевые слова: прогнозирование заболеваемости, поточечные оценки, регрессионные модели, АРПСС, скрытые марковские модели, метод аналогий, экспоненциальное сглаживание, SIR, модель Барояна–Рвачева, клеточные автоматы, популяционные модели, агентные модели.
Forecasting methods and models of disease spread
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882Views (last year): 71. Citations: 19 (RSCI).The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).
-
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.
Methods and problems in the kinetic approach for simulating biological structures
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866Views (last year): 31.The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.
-
Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.
Ключевые слова: популяционная динамика, модель «две жертвы – хищник», случайные возмущения, бифуркации, равновесия, осцилляции, биритмичность, хаос, стохастическая чувствительность, доверительные области.
Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.
-
Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.
Ключевые слова: субградиентный метод, липшицева функция, острый минимум, шаг Б. Т. Поляка, квазивыпуклая функция, слабовыпуклая функция.
Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 105-122In this paper, we consider two variants of the concept of sharp minimum for mathematical programming problems with quasiconvex objective function and inequality constraints. It investigated the problem of describing a variant of a simple subgradient method with switching along productive and non-productive steps, for which, on a class of problems with Lipschitz functions, it would be possible to guarantee convergence with the rate of geometric progression to the set of exact solutions or its vicinity. It is important that to implement the proposed method there is no need to know the sharp minimum parameter, which is usually difficult to estimate in practice. To overcome this problem, the authors propose to use a step adjustment procedure similar to that previously proposed by B. T. Polyak. However, in this case, in comparison with the class of problems without constraints, it arises the problem of knowing the exact minimal value of the objective function. The paper describes the conditions for the inexactness of this information, which make it possible to preserve convergence with the rate of geometric progression in the vicinity of the set of minimum points of the problem. Two analogs of the concept of a sharp minimum for problems with inequality constraints are considered. In the first one, the problem of approximation to the exact solution arises only to a pre-selected level of accuracy, for this, it is considered the case when the minimal value of the objective function is unknown; instead, it is given some approximation of this value. We describe conditions on the inexact minimal value of the objective function, under which convergence to the vicinity of the desired set of points with a rate of geometric progression is still preserved. The second considered variant of the sharp minimum does not depend on the desired accuracy of the problem. For this, we propose a slightly different way of checking whether the step is productive, which allows us to guarantee the convergence of the method to the exact solution with the rate of geometric progression in the case of exact information. Convergence estimates are proved under conditions of weak convexity of the constraints and some restrictions on the choice of the initial point, and a corollary is formulated for the convex case when the need for an additional assumption on the choice of the initial point disappears. For both approaches, it has been proven that the distance from the current point to the set of solutions decreases with increasing number of iterations. This, in particular, makes it possible to limit the requirements for the properties of the used functions (Lipschitz-continuous, sharp minimum) only for a bounded set. Some computational experiments are performed, including for the truss topology design problem.
-
Исследование достижимости цели в медицинском квесте
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.
Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.
Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.
Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.
Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.
Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.
Ключевые слова: медицинское обследование, ветвящийся случайный процесс, модель Гальтона – Ватсона, размытые фазовые переходы, конечные системы, условно-бесконечные траектории, макросистема, функция включения, области почти чистых фаз, параметр порядка, химический потенциал, фазовая диаграмма, критическое поведение.
Research on the achievability of a goal in a medical quest
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1149-1179The work presents an experimental study of the tree structure that occurs during a medical examination. At each meeting with a medical specialist, the patient receives a certain number of areas for consulting other specialists or for tests. A tree of directions arises, each branch of which the patient should pass. Depending on the branching of the tree, it can be as final — and in this case the examination can be completed — and endless when the patient’s goal cannot be achieved. In the work both experimentally and theoretically studied the critical properties of the transition of the system from the forest of the final trees to the forest endless, depending on the probabilistic characteristics of the tree.
For the description, a model is proposed in which a discrete function of the probability of the number of branches on the node repeats the dynamics of a continuous gaussian distribution. The characteristics of the distribution of the Gauss (mathematical expectation of $x_0$, the average quadratic deviation of $\sigma$) are model parameters. In the selected setting, the task refers to the problems of branching random processes (BRP) in the heterogeneous model of Galton – Watson.
Experimental study is carried out by numerical modeling on the final grilles. A phase diagram was built, the boundaries of areas of various phases are determined. A comparison was made with the phase diagram obtained from theoretical criteria for macrosystems, and an adequate correspondence was established. It is shown that on the final grilles the transition is blurry.
The description of the blurry phase transition was carried out using two approaches. In the first, standard approach, the transition is described using the so-called inclusion function, which makes the meaning of the share of one of the phases in the general set. It was established that such an approach in this system is ineffective, since the found position of the conditional boundary of the blurred transition is determined only by the size of the chosen experimental lattice and does not bear objective meaning.
The second, original approach is proposed, based on the introduction of an parameter of order equal to the reverse average tree height, and the analysis of its behavior. It was established that the dynamics of such an order parameter in the $\sigma = \text{const}$ section with very small differences has the type of distribution of Fermi – Dirac ($\sigma$ performs the same function as the temperature for the distribution of Fermi – Dirac, $x_0$ — energy function). An empirical expression has been selected for the order parameter, an analogue of the chemical potential is introduced and calculated, which makes sense of the characteristic scale of the order parameter — that is, the values of $x_0$, in which the order can be considered a disorder. This criterion is the basis for determining the boundary of the conditional transition in this approach. It was established that this boundary corresponds to the average height of a tree equal to two generations. Based on the found properties, recommendations for medical institutions are proposed to control the provision of limb of the path of patients.
The model discussed and its description using conditionally-infinite trees have applications to many hierarchical systems. These systems include: internet routing networks, bureaucratic networks, trade and logistics networks, citation networks, game strategies, population dynamics problems, and others.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




