Результаты поиска по 'метод характеристик':
Найдено статей: 148
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  2. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 5-7
  3. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 385-387
    Editor's note
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 385-387
  4. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 525-528
  5. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 757-760
  6. Скалько Ю.И., Карасёв Р.Н., Акопян А.В., Цыбулин И.В., Мендель М.А.
    Маршевый алгоритм решения задачи переноса излучения методом коротких характеристик
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 203-215

    В работе изложена процедура построения численных решений для задачи переноса излучения. В этом подходе численное решение строится последовательно от границы области вдоль направления распространения излучения. Проведено тестирование алгоритма задаче распространения излучения нагретого шара.

    Skalko Y.I., Karasev R.N., Akopyan A.V., Tsybulin I.V., Mendel M.A.
    Space-marching algorithm for solving radiative transfer problem based on short-characteristics method
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 203-215

    A procedure of approximate solving of the radiation transfer problem is presented. The approximated solution is being built successively from the domain border along the direction of radiation propagation. The algorithm was tested for model problem of hot ball radiation.

    Views (last year): 10. Citations: 3 (RSCI).
  7. Анисимова Э.С.
    Идентификация онлайн-подписи с помощью оконного преобразования Фурье и радиального базиса
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 357-364

    В данной работе описан метод идентификации онлайн-подписи с использованием оконного преобразования Фурье и вейвлет-преобразования с радиальным базисом специального вида. При идентификации используются динамические характеристики подписи. Приведены оценки достоверности предложенной процедуры.

    Anisimova E.S.
    On-line signature identification using a short-time Fourier transform and the radial basis
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 357-364

    This paper describes a method of on-line signature identification using the short-time Fourier transform and wavelet transform with radial basis of a special kind. In carrying out the identification, we use dynamic properties signature. We adduce the assessment of the reliability of the proposed procedure.

    Views (last year): 4. Citations: 3 (RSCI).
  8. Аксёнов А.А.
    FlowVision: индустриальная вычислительная гидродинамика
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20

    В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.

    ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.

    FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений Навье–Стокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.

    Aksenov A.A.
    FlowVision: Industrial computational fluid dynamics
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20

    The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.

    The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.

    FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.

    Views (last year): 30. Citations: 8 (RSCI).
  9. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

    Kiselev M.V., Urusov A.M., Ivanitsky A.Y.
    The adaptive Gaussian receptive fields for spiking encoding of numeric variables
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 389-400

    Conversion of numeric data to the spiking form and information losses in this process are serious problems limiting usage of spiking neural networks in applied informational systems. While physical values are represented by numbers, internal representation of information inside spiking neural networks is based on spikes — elementary objects emitted and processed by neurons. This problem is especially hard in the reinforcement learning applications where an agent should learn to behave in the dynamic real world because beside the accuracy of the encoding method, its dynamic characteristics should be considered as well. The encoding algorithm based on the Gaussian receptive fields (GRF) is frequently used. In this method, one numeric variable fed to the network is represented by spike streams emitted by a certain set of network input nodes. The spike frequency in each stream is determined by proximity of the current variable value to the center of the receptive field corresponding to the given input node. In the standard GRF algorithm, the receptive field centers are placed equidistantly. However, it is inefficient in the case of very uneven distribution of the variable encoded. In the present paper, an improved version of this method is proposed which is based on adaptive selection of the Gaussian centers and spike stream frequencies. This improved GRF algorithm is compared with its standard version in terms of amount of information lost in the coding process and of accuracy of classification models built on spike-encoded data. The fraction of information retained in the process of the standard and adaptive GRF encoding is estimated using the direct and reverse encoding procedures applied to a large sample from the triangular probability distribution and counting coinciding bits in the original and restored samples. The comparison based on classification was performed on a task of evaluation of current state in reinforcement learning. For this purpose, the classification models were created by machine learning algorithms of very different nature — nearest neighbors algorithm, random forest and multi-layer perceptron. Superiority of our approach is demonstrated on all these tests.

  10. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Korchak A.B.
    Accuracy control for fast circuit simulation
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 365-370

    We developed an algorithm for fast simulation of VLSI CMOS (Very Large Scale Integration with Complementary Metal-Oxide-Semiconductors) with an accuracy control. The algorithm provides an ability of parallel numerical experiments in multiprocessor computational environment. There is computation speed up by means of block-matrix and structural (DCCC) decompositions application. A feature of the approach is both in a choice of moments and ways of parameters synchronization and application of multi-rate integration methods. Due to this fact we have ability to estimate and control error of given characteristics.

    Citations: 1 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"