Результаты поиска по 'модели регрессии':
Найдено статей: 16
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 201-203
    Views (last year): 29.
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 229-233
  3. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 455-457
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 521-523
  5. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 525-528
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 525-528
  6. Тихов М.С., Бородина Т.С.
    Математическая модель и компьютерный анализ критериев однородности зависимости «доза–эффект»
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 267-273

    Данная работа посвящена сравнению двух критериев однородности: критерия χ2, основанного на таблицах сопряженности признаков 2 × 2, и критерия однородности, основанного на асимптотических распределениях суммируемых квадратичных уклонений оценок функции распределения в модели зависимости «доза–эффект». Оценка мощности критериев производится при помощи компьютерного моделирования. Для построения функций эффективности используется метод ядерной оценки регрессии, основанный на оценке Надарая–Ватсона.

    Tikhov M.S., Borodina T.S.
    Mathematical model and computer analysis of tests for homogeneity of “dose–effect” dependence
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 267-273

    The given work is devoted to the comparison of two tests for homogeneity: chi-square test based on contingency tables of 2 × 2 and test for homogeneity based on asymptotic distributions of the summarized square error of a distribution function estimators in the model of ”dose–effect” dependence. The evaluation of test power is performed by means of computer simulation. In order to design efficiency functions the method of kernel regression estimator based on Nadaray–Watson estimator is used.

    Views (last year): 6.
  7. Михеев А.В., Казаков Б.Н.
    Новый метод точечной оценки параметров парной регрессии
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 57-77

    Описывается новый метод отыскания параметров однофакторной регрессионной модели: метод наибольшего косинуса. Реализация метода предполагает разделение параметров модели на две группы. Параметры первой группы, отвечающие за угол между вектором экспериментальных данных и вектором регрессионной модели, определяются по максимуму косинуса угла между этими векторами. Во вторую группу входит масштабный множитель. Он определяется «спрямлением» зависимости координат вектора экспериментальных данных от координат вектора регрессионной модели. Исследована взаимосвязь метода наибольшего косинуса с методом наименьших квадратов. Эффективность метода проиллюстрирована примерами из физики.

    Mikheev A.V., Kazakov B.N.
    A New Method For Point Estimating Parameters Of Simple Regression
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 57-77

    A new method is described for finding parameters of univariate regression model: the greatest cosine method. Implementation of the method involves division of regression model parameters into two groups. The first group of parameters responsible for the angle between the experimental data vector and the regression model vector are defined by the maximum of the cosine of the angle between these vectors. The second group includes the scale factor. It is determined by means of “straightening” the relationship between the experimental data vector and the regression model vector. The interrelation of the greatest cosine method with the method of least squares is examined. Efficiency of the method is illustrated by examples.

    Views (last year): 2. Citations: 4 (RSCI).
  8. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

    Yudin N.E.
    Modified Gauss–Newton method for solving a smooth system of nonlinear equations
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723

    In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.

  9. Никольский И.М.
    Оптимизация размера классификатора при сегментации трехмерных точечных образов древесной растительности
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 665-675

    Появление технологий лазерного сканирования произвело настоящую революцию в лесном хозяйстве. Их использование позволило перейти от изучения лесных массивов с помощью ручных измерений к компьютерному анализу точечных стереоизображений, называемых облаками точек.

    Автоматическое вычисление некоторых параметров деревьев (таких как диаметр ствола) по облаку точек требует удаления точек листвы. Для выполнения этой операции необходима предварительная сегментация стереоизображения на классы «листва» и «ствол». Решение этой задачи зачастую включает использование методов машинного обучения.

    Одним из самых популярных классификаторов, используемых для сегментации стереоизображений деревьев, является случайный лес. Этот классификатор достаточно требователен к объему памяти. В то же время размер модели машинного обучения может быть критичным при необходимости ее пересылки, что требуется, например, при выполнении распределенного обучения. В данной работе ставится цель найти классификатор, который был бы менее требовательным по памяти, но при этом имел бы сравнимую точность сегментации. Поиск выполняется среди таких классификаторов, как логистическая регрессия, наивный байесовский классификатор и решающее дерево. Кроме того, исследуется способ уточнения сегментации, выполненной решающим деревом, с помощью логистической регрессии.

    Эксперименты проводились на данных из коллекции университета Гейдельберга. Было показано, что классификация с помощью решающего дерева, корректируемая с помощью логистической регрессии, способна давать результат, лишь немного проигрывающий результату случайного леса по точности, затрачивая при этом меньше времени и оперативной памяти. Разница в сбалансированной точности составляет не более процента на всех рассмотренных облаках, при этом суммарный размер и время предсказания классификаторов решающего дерева и логистической регрессии на порядок меньше, чем у случайного леса.

    Nikolsky I.M.
    Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675

    The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.

    Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.

    One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.

    The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.

    It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.

  10. Марченко Л.Н., Косенок Я.А., Гайшун В.Е., Бруттан Ю.В.
    Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252

    Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.

    Marchanko L.N., Kasianok Y.A., Gaishun V.E., Bruttan I.V.
    Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252

    The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"