All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Автоматизация построения банков высококачественных концептов с использованием больших языковых моделей и мультимодальных метрик
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1555-1567Интерпретируемость моделей глубокого обучения стала центром исследований, особенно в таких областях, как здравоохранение и финансы. Модели с «бутылочным горлышком», используемые для выявления концептов, стали перспективным подходом для достижения прозрачности и интерпретируемости за счет использования набора известных пользователю понятий в качестве промежуточного представления перед слоем предсказания. Однако ручное аннотирование понятий не затруднено из-за больших затрат времени и сил. В нашей работе мы исследуем потенциал больших языковых моделей (LLM) для создания высококачественных банков концептов и предлагаем мультимодальную метрику для оценки качества генерируемых концептов. Мы изучили три ключевых вопроса: способность LLM генерировать банки концептов, сопоставимые с существующими базами знаний, такими как ConceptNet, достаточность унимодального семантического сходства на основе текста для оценки ассоциаций концептов с метками, а также эффективность мультимодальной информации для количественной оценки качества генерации концептов по сравнению с унимодальным семантическим сходством концепт-меток. Наши результаты показывают, что мультимодальные модели превосходят унимодальные подходы в оценке сходства между понятиями и метками. Более того, сгенерированные нами концепты для наборов данных CIFAR-10 и CIFAR-100 превосходят те, что были получены из ConceptNet и базовой модели, что демонстрирует способность LLM генерировать высококачественные концепты. Возможность автоматически генерировать и оценивать высококачественные концепты позволит исследователям работать с новыми наборами данных без дополнительных усилий.
Ключевые слова: интерпретируемость, большие языковые модели, нейросети с «бутылочным горлышком», машинное обучение.
Automating high-quality concept banks: leveraging LLMs and multimodal evaluation metrics
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1555-1567Interpretability in recent deep learning models has become an epicenter of research particularly in sensitive domains such as healthcare, and finance. Concept bottleneck models have emerged as a promising approach for achieving transparency and interpretability by leveraging a set of humanunderstandable concepts as an intermediate representation before the prediction layer. However, manual concept annotation is discouraged due to the time and effort involved. Our work explores the potential of large language models (LLMs) for generating high-quality concept banks and proposes a multimodal evaluation metric to assess the quality of generated concepts. We investigate three key research questions: the ability of LLMs to generate concept banks comparable to existing knowledge bases like ConceptNet, the sufficiency of unimodal text-based semantic similarity for evaluating concept-class label associations, and the effectiveness of multimodal information in quantifying concept generation quality compared to unimodal concept-label semantic similarity. Our findings reveal that multimodal models outperform unimodal approaches in capturing concept-class label similarity. Furthermore, our generated concepts for the CIFAR-10 and CIFAR-100 datasets surpass those obtained from ConceptNet and the baseline comparison, demonstrating the standalone capability of LLMs in generating highquality concepts. Being able to automatically generate and evaluate high-quality concepts will enable researchers to quickly adapt and iterate to a newer dataset with little to no effort before they can feed that into concept bottleneck models.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




