All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа.
Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.
Keywords: data processing, experiment, cytokine, immune system, pneumonia, statistics, approximation, Hausdorff distance. -
Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.
Ключевые слова: экспертная система, извлечение знаний, лингвистическая переменная, степень принадлежности, нечеткое правило.
Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.
-
Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.
В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.
Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.
Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.
Ключевые слова: математическая модель с дискретным временем, эволюция, линейный r–K-отбор, устойчивость, бифуркация, оптимальный равновесный промысел.
Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.
This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.
Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.
These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.
-
Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.
Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.
Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.
Ключевые слова: рейтинг одобрения, политическое лидерство, информационное воздействие, стадное поведение, марковскийпр оцесс.
Stochastic model of voter dynamics in online media
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.
The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.
Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.
-
Численная модель механического отклика самоподъемной плавучей буровой установки на сейсмические воздействия
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 853-871В работе представлены результаты численного моделирования напряженно-деформированного состояния самоподъемных плавучих буровых установок, использующихся для освоения шельфовых месторождений углеводородов. Изучены равновесное напряженное состояние установки, погруженной в донный грунт, и его изменение, вызванное внешним механическим воздействием. Рассмотрена частная задача, в рамках которой в роли внешнего воздействия выступает поверхностная сейсмическая волна от удаленного землетрясения. Исследован отклик системы «самоподъемная плавучая буровая установка – донный грунт» на такое воздействие: проанализировано перераспределение полей напряжений и деформаций в системе, вызванное сейсмическим воздействием. Рассмотрен вопрос устойчивости установки: продемонстрировано, что приход сейсмической волны приводит к резкому росту напряжений в определенных элементах опорных колонн, что может привести к потере устойчивости. Для численного моделирования рассмотренной контактной задачи теории упругости использован метод конечных элементов. Проверка корректности постановки задачи и сходимости ее решения была выполнена путем рассмотрения известной задачи о вдавливании жесткого цилиндра в упругое полупространство. Показано, что использующаяся для анализа устойчивости самоподъемной буровой установки численная схема дает верные результаты для рассмотренной модельной задачи при условии корректного построения сетки конечных элементов. В рамках работы были исследованы роли различных факторов, определяющих условия достижения напряжениями в самоподъемной плавучей буровой установке критических значений: рассмотрены степень выраженности сейсмического воздействия, механические свойства донного грунта и глубина погружения опорных колонн установки в грунт. Сделаны предварительные выводы о необходимости заглубления опорных колонн в донный грунт с учетомег о механических свойств и характерной для региона сейсмичности. Представленный в работе подход может быть использован в качестве инструмента для прогноза рисков, связанных с освоениемм есторождений углеводородов, расположенных на континентальном шельфе, а использованная схема численного моделирования — для решения класса контактных задач теории упругости, требующих анализа динамических процессов.
Ключевые слова: сейсмическое воздействие, самоподъемная плавучая буровая установка, метод конечных элементов, механическая устойчивость, контактная задача теории упругости.
Numerical model of jack-up rig’s mechanical behavior under seismic loading
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.
-
Случайный лес факторов риска как прогностический инструмент неблагоприятных событий в клинической медицине
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 987-1004Целью исследования являются разработка ансамблевого метода машинного обучения, обеспечивающего построение интерпретируемых прогностических моделей, и его апробация на примере прогнозирования внутригоспитальной летальности (ВГЛ) у больных инфарктом миокарда с подъемом сегмента ST (ИМпST).
Проведено ретроспективное когортное исследование по данным 5446 электронных историй болезни пациентов с ИМпST, которым выполнялось чрескожное коронарное вмешательство (ЧКВ). Было выделено две группы лиц, первую изк оторых составили 335 (6,2%) больных, умерших в стационаре, вторую — 5111 (93,8%) — с благоприятным исходом лечения. Пул потенциальных предикторов был сформирован с помощью методов математической статистики. С помощью методов мультиметрической категоризации (минимизация p-value, максимизация площади под ROC-кривой-AUC и результаты анализа shap-value), деревьев решений и многофакторной логистической регрессии (МЛР) предикторы были преобразованы в факторы риска ВГЛ. Для разработки прогностических моделей ВГЛ использовали МЛР, случайный лес факторов риска (СЛФР), стохастический градиентный бустинг (XGboost), случай- ный лес, методы Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine и Stacking.
Авторами разработан метод СЛФР, который обобщает результаты прогноза модифицированных деревьев решений, выделяет факторы риска и ранжирует их по интенсивности влияния на вероятность развития неблагоприятного события. СЛФР позволяет разрабатывать модели с высоким прогностическим потенциалом (AUC = 0,908), сопоста- вимым с моделями CatBoost и Stacking (AUC: 0,904 и 0,908 соответственно). Метод СЛФР может рассматриваться в качестве важного инструмента для клинического обоснования результатов прогноза и стать основой для разработки высокоточных интерпретируемых моделей.
Ключевые слова: ансамблевые методы машинного обучения, факторы риска, категоризация непрерывных переменных, аддитивное объяснение Шепли, интерпретируемые модели машинного обучения.
Random forest of risk factors as a predictive tool for adverse events in clinical medicine
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 987-1004The aim of study was to develop an ensemble machine learning method for constructing interpretable predictive models and to validate it using the example of predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI).
A retrospective cohort study was conducted using data from 5446 electronic medical records of STEMI patients who underwent percutaneous coronary intervention (PCI). Patients were divided into two groups: 335 (6.2%) patients who died during hospitalization and 5111 (93.8%) patients with a favourable in-hospital outcome. A pool of potential predictors was formed using statistical methods. Through multimetric categorization (minimizing p-values, maximizing the area under the ROC curve (AUC), and SHAP value analysis), decision trees, and multivariable logistic regression (MLR), predictors were transformed into risk factors for IHM. Predictive models for IHM were developed using MLR, Random Forest Risk Factors (RandFRF), Stochastic Gradient Boosting (XGboost), Random Forest (RF), Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine and Stacking methods.
Authors developed the RandFRF method, which integrates the predictive outcomes of modified decision trees, identifies risk factors and ranks them based on their contribution to the risk of adverse outcomes. RandFRF enables the development of predictive models with high discriminative performance (AUC 0.908), comparable to models based on CatBoost and Stacking (AUC 0.904 and 0.908, respectively). In turn, risk factors provide clinicians with information on the patient’s risk group classification and the extent of their impact on the probability of IHM. The risk factors identified by RandFRF can serve not only as rationale for the prediction results but also as a basis for developing more accurate models.
-
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 2. Детерминационный анализ
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 271-292На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторым физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы методы описания связи между качественными классами характеристик, основанные на прогнозе качественных значений одной характеристики по качественным значениям другой. Найдены границы качественных классов исследуемых характеристик.
Ключевые слова: флуоресценция, фитопланктон, пигменты, хлорофилл, коэффициент Валли- са, коэффициент Гуттмана, коэффициент Чеснокова, поиск связи, Рыбинское водохранилище.
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 2. Determination analysis
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 271-292Views (last year): 2. Citations: 3 (RSCI).Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The methods of describing of connections between qualitative classes of characteristics, based on forecast of quality values of one characteristics by quality values of another one, are studied. The borders of quality classes of studied characteristics are found.
-
Моделирование межрегиональных миграционных потоков клеточными автоматами
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1467-1483В статье исследуется проблема разработки и обоснования наиболее адекватного инструментария для прогнозирования величины и структуры межрегиональных миграционных потоков. Миграционные процессы оказывают значительное влияние на численность и демографическую структуру населения территорий, состояние и сбалансированность региональных и локальных рынков труда. Для анализа миграционных процессов и оценки их последствий необходим экономикоатематический инструментарий, позволяющий с необходимой точностью моделировать миграционные процессы и потоки для различных территорий. Рассмотрены существующие подходы и методы моделирования миграционных процессов с анализом их преимуществ и недостатков. Отмечается, что для реализации многих из этих методов необходим большой массив агрегированных статистических данных, который не всегда имеется в наличии и не характеризует поведение мигрантов на локальном уровне, на котором принимается решение о переезде на новое место жительства. Это существенно влияет на возможность применения соответствующих методов моделирования миграционных процессов и точность прогнозов величины и структуры миграционных потоков.
В работе разработана и апробирована на данных Приморского края модель клеточного автомата для моделирования межрегиональных миграционных потоков, реализующая интеграцию модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности в общую модель миграционного потока территории. Для реализации модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности предложен интегральный индекс привлекательности регионов с экономической, социальной и экологической составляющими. Для оценки прогностической способности разработанной модели проведено ее сравнение с существующими моделями клеточных автоматов, используемыми для прогнозирования межрегиональных миграционных потоков. Для этих целей был использован метод вневыборочного прогнозирования, который показал статистически значимое превосходство предложенной модели, которая позволяет получать прогнозы и количественные характеристики миграционных потоков территорий на основе реального миграционного поведения домашних хозяйств на локальном уровне с учетом условий их проживания и поведенческих мотивов.
Ключевые слова: миграционные потоки, модели, сравнительный анализ, клеточные автоматы, ограниченная рациональность, точность прогноза.
Modelling interregional migration flows by the cellular automata
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.
To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.
The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.
To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.
-
Прогноз роста глобальной температуры в XXI веке на основе простой статистической модели
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 379-390Предложена простая статистическая модель динамики среднегодовой глобальной температуры, комбинирующая логарифмический эффект роста концентрации диоксида углерода и вклад климатических циклов. Параметры модели определены по известным данным инструментальных измерений за 1850–2010 гг. Модель подтверждает достоверное наличие в динамике двух циклических процессов периодичности в 10.5 и 68.8 лет. С использованием сценариев изменения концентрации двуоксида углерода, предложенных в 5-ом оценочном докладе МГЭИК, построен прогноз изменения среднегодовой глобальной температуры в XXI веке. Оказалось, что траектории роста глобальной температуры из доклада МГЭИК на 0.9–1.8 °C выше полученных в модели.
Ключевые слова: глобальные изменения климата, диоксид углерода, статистическая модель, про- гноз, климатические циклы.
Forecasting the global temperature increase for the XXI century by means of a simple statistical model
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 379-390Views (last year): 1.A simple statistical model is developed for the dynamics of the mean global annual temperature. The model combines the logarithmic effect of carbon dioxide concentration increase and the input by climatic cycles. Model parameters are determined from data of instrumental observations for 1850–2010. The model confirms the presence of climatic cycles with the period of 10.5 and 68.8 years in the global temperature dynamics. The trajectories of the global temperature changes for the XXI century are obtained under the scenarios of carbon dioxide concentration changes from the 5th IPCC Assessment Report. The comparison revealed that the global temperature trajectories from the Report are 0.9–1.8 °C above those obtained in the model.
-
Модели борьбы с силовыми актами в морском пространстве
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 907-920Моделирование борьбы с террористическими, пиратскими и разбойными актами на море является актуальной научной задачей в силу распространенности силовых актов и недостаточного количества работ по данной проблематике. Действия пиратов и террористов разнообразны. С использованием судна-базы они могут нападать на суда на удалении до 450–500 миль от побережья. Выбрав цель, они ее преследуют и с применением оружия идут на абордаж. Действия по освобождению судна, захваченного пиратами или террористами, включают: блокирование судна, прогноз мест возможного нахождения пи- ратов на судне, проникновение (с борта на борт, по воздуху или из-под воды) и зачистка помещений судна. Анализ специальной литературы по действиям пиратов и террористов показал, что силовой акт (и действия по его нейтрализации) состоит из двух этапов: во-первых, это блокирование судна, заключающееся в принуждении к его остановке, и, во-вторых, нейтрализация команды (группы террористов, пиратов), включая проникновение на судно (корабль) и его зачистку. Этапам цикла поставлены в соответствие показатели — вероятность блокирования и вероятность нейтрализации. Переменными модели силового акта являются количество судов (кораблей, катеров) у нападающих и обороняющихся, а также численность группы захвата нападающих и экипажа судна — жертвы атаки. Параметры модели (показатели корабельного и боевого превосходства) оценены методом максимального правдоподобия с использованием международной базы по инцидентам на море. Значения названных параметров равны 7.6–8.5. Столь высокие значения параметров превосходства отражают возможности сторон по действиям в силовых актах. Предложен и статистически обоснован аналитический метод расчета параметров превосходства. В модели учитываются следующие показатели: возможности сторон по обнаружению противника, скоростные и маневренные характеристики судов, высота судна и характеристики средств абордажа, характеристики оружия и средств защиты и др. С использованием модели Г. Беккера и теории дискретного выбора оценена вероятность отказа от силового акта. Значимость полученных моделей для борьбы с силовыми актами в морском пространстве заключается в возможности количественного обоснования мер по защите судна от пиратских и террористических атак и мер сдерживания, направленных на предотвращение атак (наличие на борту судна вооруженной охраны, помощь военных кораблей и вертолетов).
Ключевые слова: математическая модель, пираты, морские террористы, силовой акт, блокирование, нейтрализация, вероятностная модель, оценка параметров.
Mathematical models of combat and military operations
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 907-920Modeling the fight against terrorist, pirate and robbery acts at sea is an urgent scientific task due to the prevalence of force acts and the insufficient number of works on this issue. The actions of pirates and terrorists are diverse. Using a base ship, they can attack ships up to 450–500 miles from the coast. Having chosen the target, they pursue it and use the weapons to board the ship. Actions to free a ship captured by pirates or terrorists include: blocking the ship, predicting where pirates might be on the ship, penetrating (from board to board, by air or from under water) and cleaning up the ship’s premises. An analysis of the special literature on the actions of pirates and terrorists showed that the act of force (and actions to neutralize it) consists of two stages: firstly, blocking the vessel, which consists in forcing it to stop, and secondly, neutralizing the team (terrorist groups, pirates), including penetration of a ship (ship) and its cleaning. The stages of the cycle are matched by indicators — the probability of blocking and the probability of neutralization. The variables of the act of force model are the number of ships (ships, boats) of the attackers and defenders, as well as the strength of the capture group of the attackers and the crew of the ship - the victim of the attack. Model parameters (indicators of naval and combat superiority) were estimated using the maximum likelihood method using an international database of incidents at sea. The values of these parameters are 7.6–8.5. Such high values of superiority parameters reflect the parties' ability to act in force acts. An analytical method for calculating excellence parameters is proposed and statistically substantiated. The following indicators are taken into account in the model: the ability of the parties to detect the enemy, the speed and maneuverability characteristics of the vessels, the height of the vessel and the characteristics of the boarding equipment, the characteristics of weapons and protective equipment, etc. Using the Becker model and the theory of discrete choice, the probability of failure of the force act is estimated. The significance of the obtained models for combating acts of force in the sea space lies in the possibility of quantitative substantiation of measures to protect the ship from pirate and terrorist attacks and deterrence measures aimed at preventing attacks (the presence of armed guards on board the ship, assistance from warships and helicopters).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




