Результаты поиска по 'статистика':
Найдено статей: 34
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Editor's note
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 673-675
    Views (last year): 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 279-283
    Views (last year): 18.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 733-735
    Views (last year): 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1097-1100
  5. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 999-1002
  6. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1415-1418
  7. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1033-1035
    Editor’s note
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1033-1035
  8. В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.

    The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.

    Views (last year): 2. Citations: 2 (RSCI).
  9. Мы рассматриваем модель спонтанного формирования вычислительной структуры в мозге человека для решения заданного класса задач в процессе выполнения серии однотипных заданий. Модель основана на специальном определении числовой меры сложности алгоритма решения. Эта мера обладает информационным свойством: сложность вычислительной структуры, состоящей из двух независимых структур, равна сумме сложностей этих структур. Тогда вероятность спонтанного возникновения структуры экспоненциально зависит от сложности структуры. Коэффициент при экспоненте требует экспериментального определения для каждого типа задач. Он может зависеть от формы предъявления исходных данных и от процедуры выдачи результата. Этот метод оценки применен к результатам серии экспериментов, в которых определялась стратегия решения человеком серии однотипных задач с растущим числом исходных данных. Эти эксперименты были описаны в ранее изданных работах. Рассматривались две основные стратегии: последовательное выполнение вычислительного алгоритма или использование параллельных вычислений в тех задачах, где это эффективно. Эти стратегии различаются схемами проведения вычислений. Используя оценку сложности схем, можно по эмпирической вероятности одной из стратегий рассчитать вероятность другой. Проведенные вычисления показали хорошее совпадение расчетной и эмпирической вероятности. Это подтверждает гипотезу о спонтанном формировании структур, решающих задачу, в процессе начальной тренировки человека. Работа содержит краткое описание экспериментов, подробные вычислительные схемы и строгое определение меры сложности вычислительных структур и вывод зависимости вероятности формирования структуры от ее сложности.

    We consider a model of spontaneous formation of a computational structure in the human brain for solving a given class of tasks in the process of performing a series of similar tasks. The model is based on a special definition of a numerical measure of the complexity of the solution algorithm. This measure has an informational property: the complexity of a computational structure consisting of two independent structures is equal to the sum of the complexities of these structures. Then the probability of spontaneous occurrence of the structure depends exponentially on the complexity of the structure. The exponential coefficient requires experimental determination for each type of problem. It may depend on the form of presentation of the source data and the procedure for issuing the result. This estimation method was applied to the results of a series of experiments that determined the strategy for solving a series of similar problems with a growing number of initial data. These experiments were described in previously published papers. Two main strategies were considered: sequential execution of the computational algorithm, or the use of parallel computing in those tasks where it is effective. These strategies differ in how calculations are performed. Using an estimate of the complexity of schemes, you can use the empirical probability of one of the strategies to calculate the probability of the other. The calculations performed showed a good match between the calculated and empirical probabilities. This confirms the hypothesis about the spontaneous formation of structures that solve the problem during the initial training of a person. The paper contains a brief description of experiments, detailed computational schemes and a strict definition of the complexity measure of computational structures and the conclusion of the dependence of the probability of structure formation on its complexity.

  10. Свистунов И.Н., Колокол А.С., Шимкевич А.Л.
    Топологический анализ микроструктуры жидкой воды на примере модели TIP4P-EW
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 415-426

    Проведено молекулярно-динамическое (МД) моделирование жесткой TIP4P-EW модели воды при нормальных условиях. В качестве структурных элементов системы рассматривались симплексы Делоне, а для выделения ее плотной части использовался топологический критерий, который позволяет идентифицировать на мгновенных снимках МД ячейки микроструктуру системы молекул воды. Геометрический анализ симплексов Делоне системы указывает на сильную их уплощенность по сравнению с правильным тетраэдром, что принципиально отличается от результатов для простых жидкостей. Статистика кластеров плотной части мгновенного снимка системы исследовалась в зависимости от их мощности и связности. Она схожа с таковой для простых жидкостей, а структура этой плотной части также представляет собой фрактальную поверхность, состоящую из свободных граней симплексов Делоне.

    Svistunov I.N., Kolokol A.S., Shimkevich A.L.
    Topological microstructure analysis of the TIP4P-EW water model
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 415-426

    Molecular dynamics (MD) simulations of rigid water model TIP4P-EW at ambient conditions were carried out. Delaunay’s simplexes were considered as structural elements of liquid water. Topological criterion which allows to identify the water microstructure in snapshot of MD cell was used to allocate its dense part. Geometrical analysis of water Delaunay’s simplexes indicates their strong flatness in comparison with a regular tetrahedron that is fundamentally different from the results for dense part of simple liquids. The statistics of TIP4P-EW water clusters was investigated depending on their cardinality and connectivity. It is similar to the statistics for simple liquids and the structure of this dense part is also a fractal surface consisting of the free edges of the Delaunay’s simplexes.

    Views (last year): 1. Citations: 1 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"