All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Оптимизация размера классификатора при сегментации трехмерных точечных образов древесной растительности
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 665-675Появление технологий лазерного сканирования произвело настоящую революцию в лесном хозяйстве. Их использование позволило перейти от изучения лесных массивов с помощью ручных измерений к компьютерному анализу точечных стереоизображений, называемых облаками точек.
Автоматическое вычисление некоторых параметров деревьев (таких как диаметр ствола) по облаку точек требует удаления точек листвы. Для выполнения этой операции необходима предварительная сегментация стереоизображения на классы «листва» и «ствол». Решение этой задачи зачастую включает использование методов машинного обучения.
Одним из самых популярных классификаторов, используемых для сегментации стереоизображений деревьев, является случайный лес. Этот классификатор достаточно требователен к объему памяти. В то же время размер модели машинного обучения может быть критичным при необходимости ее пересылки, что требуется, например, при выполнении распределенного обучения. В данной работе ставится цель найти классификатор, который был бы менее требовательным по памяти, но при этом имел бы сравнимую точность сегментации. Поиск выполняется среди таких классификаторов, как логистическая регрессия, наивный байесовский классификатор и решающее дерево. Кроме того, исследуется способ уточнения сегментации, выполненной решающим деревом, с помощью логистической регрессии.
Эксперименты проводились на данных из коллекции университета Гейдельберга. Было показано, что классификация с помощью решающего дерева, корректируемая с помощью логистической регрессии, способна давать результат, лишь немного проигрывающий результату случайного леса по точности, затрачивая при этом меньше времени и оперативной памяти. Разница в сбалансированной точности составляет не более процента на всех рассмотренных облаках, при этом суммарный размер и время предсказания классификаторов решающего дерева и логистической регрессии на порядок меньше, чем у случайного леса.
Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.
Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.
One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.
The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.
It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.
-
Поиск реализуемых энергоэффективных походок плоского пятизвенного двуногого робота с точечным контактом
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 155-170В статье рассматривается процесс поиска опорных траекторий движения плоского пятизвенного двуногого шагающего робота с точечным контактом. Для этого используются метод приведения динамики к низкоразмерному нулевому многообразию с помощью наложения виртуальных связей и алгоритмы нелинейной оптимизации для поиска параметров наложенных связей. Проведен анализ влияния степени полиномов Безье, аппроксимирующих виртуальные связи, а также условия непрерывности управляющих воздействий на энергоэффективность движения. Численные расчеты показали, что на практике достаточно рассматривать полиномы со степенями 5 или 6, так как дальнейшее увеличение степени приводит к увеличению вычислительных затрат, но не гарантирует уменьшение энергозатрат походки. Помимо этого, было установлено, что введение ограничений на непрерывность управляющих воздействий не приводит к существенному уменьшению энергоэффективности и способствует реализуемости походки на реальном роботе благодаря плавному изменению крутящих моментов в приводах. В работе показано, что для решения задачи поиска минимума целевой функции в виде энергозатрат при наличии большого количества ограничений целесообразно на первом этапе найти допустимые точки в пространстве параметров, а на втором этапе — осуществлять поиск локальных минимумов, стартуя с этих точек. Для первого этапа предложен алгоритм расчета начальных приближений искомых параметров, позволяющий сократить время поиска траекторий (в среднем до 3-4 секунд) по сравнению со случайным начальным приближением. Сравнение значений целевых функций на первом и на втором этапах показывает, что найденные на втором этапе локальные минимумы дают в среднем двукратный выигрыш по энергоэффективности в сравнении со случайно найденной на первом этапе допустимой точкой. При этом времязатраты на выполнение локальной оптимизации на втором этапе являются существенными.
Ключевые слова: двуногий шагающий робот, неполноприводная система, гибридная система, оптимальная траектория.
Searching for realizable energy-efficient gaits of planar five-link biped with a point contact
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 155-170In this paper, we discuss the procedure for finding nominal trajectories of the planar five-link bipedal robot with point contact. To this end we use a virtual constraints method that transforms robot’s dynamics to a lowdimensional zero manifold; we also use a nonlinear optimization algorithms to find virtual constraints parameters that minimize robot’s cost of transportation. We analyzed the effect of the degree of Bezier polynomials that approximate the virtual constraints and continuity of the torques on the cost of transportation. Based on numerical results we found that it is sufficient to consider polynomials with degrees between five and six, as further increase in the degree of polynomial results in increased computation time while it does not guarantee reduction of the cost of transportation. Moreover, it was shown that introduction of torque continuity constraints does not lead to significant increase of the objective function and makes the gait more implementable on a real robot.
We propose a two step procedure for finding minimum of the considered optimization problem with objective function in the form of cost of transportation and with high number of constraints. During the first step we solve a feasibility problem: remove cost function (set it to zero) and search for feasible solution in the parameter space. During the second step we introduce the objective function and use the solution found in the first step as initial guess. For the first step we put forward an algorithm for finding initial guess that considerably reduced optimization time of the first step (down to 3–4 seconds) compared to random initialization. Comparison of the objective function of the solutions found during the first and second steps showed that on average during the second step objective function was reduced twofold, even though overall computation time increased significantly.
-
Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.
Ключевые слова: вибрация, холодная прокатка, рабочий валок, конечно-элементный анализ, DEFORM-3D, разнотолщинность.
Detection of influence of upper working roll’s vibrayion on thickness of sheet at cold rolling with the help of DEFORM-3D software
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 111-116Views (last year): 12. Citations: 1 (RSCI).Technical diagnosis’ current trends are connected to application of FEM computer simulation, which allows, to some extent, replace real experiments, reduce costs for investigation and minimize risks. Computer simulation, just at the stage of research and development, allows carrying out of diagnostics of equipment to detect permissible fluctuations of parameters of equipment’s work. Peculiarity of diagnosis of rolling equipment is that functioning of rolling equipment is directly tied with manufacturing of product with required quality, including accuracy. At that design of techniques of technical diagnosis and diagnostical modelling is very important. Computer simulation of cold rolling of strip was carried out. At that upper working roll was doing vibrations in horizontal direction according with published data of experiments on continuous 1700 rolling mill. Vibration of working roll in a stand appeared due to gap between roll’s craft and guide in a stand and led to periodical fluctuations of strip’s thickness. After computer simulation with the help of DEFORM software strip with longitudinal and transversal thickness variation was gotten. Visualization of strip’s geometrical parameters, according with simulation data, corresponded to type of inhomogeneity of surface of strip rolled in real. Further analysis of thickness variation was done in order to identify, on the basis of simulation, sources of periodical components of strip’s thickness, whose reasons are malfunctions of equipment. Advantage of computer simulation while searching the sources of forming of thickness variation is that different hypothesis concerning thickness formations may be tested without conducting real experiments and costs of different types may be reduced. Moreover, while simulation, initial strip’s thickness will not have fluctuations as opposed to industrial or laboratorial experiments. On the basis of spectral analysis of random process, it was established that frequency of changing of strip’s thickness after rolling in one stand coincides with frequency of working roll’s vibration. Results of computer simulation correlate with results of the researches for 1700 mill. Therefore, opportunity to apply computer simulation to find reasons of formation of thickness variation of strip on the industrial rolling mill is shown.
-
Определение промоторных и непромоторных последовательностей E.coli по профилям их электростатического потенциала
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 347-359В рамках данной работыбы ла продемонстрирована возможность использования характеристик профилей электростатического потенциала вдоль последовательностей ДНК для определения их функционального класса. Построенымо дели, позволяющие разделять промоторные и непромоторные последовательности (случайные бернуллиевские, кодирующие и псевдопромоторы) с точностью порядка 83–85%. Определены наиболее значимые участки для такого разделения, по-видимому играющие важную роль при ДНК-полимеразном узнавании.
Detection of promoter and non-promoter E.coli sequences by analysis of their electrostatic profiles
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 347-359Views (last year): 3.The article is devoted to the idea of using physical properties of DNA instead of sequence along for the aspect of accurate search and annotation of various prokaryotic genomic regions. Particulary, the possibility to use electrostatic potential distribution around DNA sequence as a classifier for identification of a few functional DNA regions was demonstrated. A number of classification models was built providing discrimination of promoters and non-promoter regions (random sequences, coding regions and promoter-like sequences) with accuracy value about 83–85%. The most valueable regions for the discrimination were determined and expected to play a certain role in the process of DNA-recognition by RNA-polymerase.
-
Решение негладких распределенных минимаксных задач с применением техники сглаживания
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.
Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.
Ключевые слова: выпуклая оптимизация, распределенная оптимизация.
Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.
We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.
Keywords: convex optimization, distributed optimization.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




