All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 29.
-
Об одном методе минимизации выпуклой липшицевой функции двух переменных на квадрате
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 379-395В статье получены оценки скорости сходимости по функции для недавно предложенного Ю.Е. Нестеровым метода минимизации выпуклой липшицевой функции двух переменных на квадрате с фиксированной стороной. Идея метода — деление квадрата на меньшие части и постепенное их удаление так, чтобы в оставшейся достаточно малой части все значения целевой функции были достаточно близки к оптимальному. При этом метод заключается вр ешении вспомогательных задач одномерной минимизации вдоль разделяющих отрезков и не предполагает вычисления точного значения градиента целевого функционала. Основной результат работы о необходимом количестве итераций для достижений заданной точности доказан вкла ссе гладких выпуклых функций, имеющих липшицев градиент. При этом отмечено, что свойство липшицевости градиента достаточно потребовать не на всем квадрате, а лишь на некоторых отрезках. Показано, что метод может работать при наличии погрешностей решения вспомогательных одномерных задач, а также при вычислении направлений градиентов. Также описана ситуация, когда возможно пренебречь временными затратами (или уменьшить их) на решение вспомогательных одномерных задач. Для некоторых примеровэк спериментально продемонстрировано, что метод может эффективно работать и на некоторых классах негладких функций. При этом построен пример простой негладкой функции, для которой при неудачном выборе субградиента даже в случае точного решения вспомогательных одномерных задач может не наблюдаться сходимость метода. Проведено сравнение работы метода Ю.Е. Нестерова, метода эллипсоидов и градиентного спуска для некоторых гладких выпуклых функций. Эксперименты показали, что метод Ю.Е. Нестерова может достигать желаемой точности решения задачи за меньшее (в сравнении с другими рассмотренными методами) время. В частности, замечено, что при увеличении точности искомого решения время работы метода Ю.Е. Нестерова может расти медленнее, чем время работы метода эллипсоидов.
Ключевые слова: задача минимизации, выпуклый функционал, липшицев функционал, липшицев градиент, негладкий функционал, субградиент, градиентный спуск, метод эллипсоидов, скорость сходимости.
One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 379-395Views (last year): 34.In the article we have obtained some estimates of the rate of convergence for the recently proposed by Yu. E.Nesterov method of minimization of a convex Lipschitz-continuous function of two variables on a square with a fixed side. The idea of the method is to divide the square into smaller parts and gradually remove them so that in the remaining sufficiently small part. The method consists in solving auxiliary problems of one-dimensional minimization along the separating segments and does not imply the calculation of the exact value of the gradient of the objective functional. The main result of the paper is proved in the class of smooth convex functions having a Lipschitz-continuous gradient. Moreover, it is noted that the property of Lipschitzcontinuity for gradient is sufficient to require not on the whole square, but only on some segments. It is shown that the method can work in the presence of errors in solving auxiliary one-dimensional problems, as well as in calculating the direction of gradients. Also we describe the situation when it is possible to neglect or reduce the time spent on solving auxiliary one-dimensional problems. For some examples, experiments have demonstrated that the method can work effectively on some classes of non-smooth functions. In this case, an example of a simple non-smooth function is constructed, for which, if the subgradient is chosen incorrectly, even if the auxiliary one-dimensional problem is exactly solved, the convergence property of the method may not hold. Experiments have shown that the method under consideration can achieve the desired accuracy of solving the problem in less time than the other methods (gradient descent and ellipsoid method) considered. Partially, it is noted that with an increase in the accuracy of the desired solution, the operating time for the Yu. E. Nesterov’s method can grow slower than the time of the ellipsoid method.
-
Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.
Ключевые слова: негладкая условная оптимизация, квазивыпуклый функционал, адаптивный зеркальный спуск, уровень гладкости, гёльдеров целевой функционал, оптимальный метод.
Mirror descent for constrained optimization problems with large subgradient values of functional constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.
-
О некоторых методах зеркального спуска для задач сильно выпуклого программирования с липшицевыми функциональными ограничениями
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1727-1746Статья посвящена специальному подходу к субградиентным методам для задач сильно выпуклого программирования с несколькими функциональными ограничениями. Точнее говоря, рассматривается задача сильно выпуклой минимизации с несколькими сильно выпуклыми ограничениями-неравенствами и предлагаются оптимизационные методы первого порядка для такого класса задач. Особенность предложенных методов — возможность использования в теоретических оценках качества выдаваемого методом решения параметров сильной выпуклости именно тех функционалов ограничений, для которых нарушается условие продyктивности итерации. Основная задача — предложить для такой постановки субградиентный метод с адаптивными правилами подбора шагов и остановки метода. Ключевая идея предложенной в данной статье методики заключается в объединении двух подходов: схемы с переключениями по продуктивным и непродуктивным шагам и недавно предложенных модификаций зеркального спуска для задач выпуклого программирования, позволяющих игнорировать часть функциональных ограничений на непродуктивных шагах алгоритма. В статье описан субградиентний метод с переключением по продyктивным и непродyктивным шагам для задач сильно выпуклого программирования в случае, когда целевая функция и функциональные ограничения удовлетворяют условию Липшица. Также рассмотрен аналог этой схемы типа зеркального спуска для задач с относительно липшицевыми и относительно сильно выпуклыми целевой функцией и ограничениями. Для предлагаемых методов получены теоретические оценки качества выдаваемого решения, указывающие на оптимальность этих методов с точки зрения нижних оракульных оценок. Кроме того, поскольку во многих задачах операция нахождения точного вектора субградиента достаточно затратна, то для рассматриваемого класса задач исследованы аналоги указанных выше методов с заменой обычного субградиента на $\delta$-субградиент целевого функционала или функциональных ограничений-неравенств. Отмеченный подход может позволить сэкономить вычислительные затраты метода за счет отказа от требования доступности точного значения субградиента в текущей точке. Показано, что оценки качества решения при этом изменяются на величину $O(\delta)$. Также приводятся результаты численных экспериментов, иллюстрирующие преимущество предлагаемых в статье методов в сравнении с некоторыми ранее известными.
Ключевые слова: субградиентный метод, зеркальный спуск, сильно выпуклая функция, липшицева функция, $\delta$-субградиент, продyктивный шаг, непродyктивный шаг.
On some mirror descent methods for strongly convex programming problems with Lipschitz functional constraints
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1727-1746The paper is devoted to one approach to constructing subgradient methods for strongly convex programming problems with several functional constraints. More precisely, the strongly convex minimization problem with several strongly convex (inequality-type) constraints is considered, and first-order optimization methods for this class of problems are proposed. The special feature of the proposed methods is the possibility of using the strong convexity parameters of the violated functional constraints at nonproductive iterations, in theoretical estimates of the quality of the produced solution by the methods. The main task, to solve the considered problem, is to propose a subgradient method with adaptive rules for selecting steps and stopping rule of the method. The key idea of the proposed methods in this paper is to combine two approaches: a scheme with switching on productive and nonproductive steps and recently proposed modifications of mirror descent for convex programming problems, allowing to ignore some of the functional constraints on nonproductive steps of the algorithms. In the paper, it was described a subgradient method with switching by productive and nonproductive steps for strongly convex programming problems in the case where the objective function and functional constraints satisfy the Lipschitz condition. An analog of the proposed subgradient method, a mirror descent scheme for problems with relatively Lipschitz and relatively strongly convex objective functions and constraints is also considered. For the proposed methods, it obtained theoretical estimates of the quality of the solution, they indicate the optimality of these methods from the point of view of lower oracle estimates. In addition, since in many problems, the operation of finding the exact subgradient vector is quite expensive, then for the class of problems under consideration, analogs of the mentioned above methods with the replacement of the usual subgradient of the objective function or functional constraints by the $\delta$-subgradient were investigated. The noted approach can save computational costs of the method by refusing to require the availability of the exact value of the subgradient at the current point. It is shown that the quality estimates of the solution change by $O(\delta)$. The results of numerical experiments illustrating the advantages of the proposed methods in comparison with some previously known ones are also presented.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
Ключевые слова: субградиентный метод, острый минимум, квазивыпуклая функция, слабо $\beta$-квазивыпуклая функция, липшицева функция, $\delta$-субградиент.
Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.
-
Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.
Ключевые слова: субградиентный метод, адаптивный метод, шаг Поляка, слабо выпуклые функции, острый минимум, неточный субградиент.
Subgradient methods for weakly convex problems with a sharp minimum in the case of inexact information about the function or subgradient
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1765-1778The problem of developing efficient numerical methods for non-convex (including non-smooth) problems is relevant due to their widespread use of such problems in applications. This paper is devoted to subgradient methods for minimizing Lipschitz $\mu$-weakly convex functions, which are not necessarily smooth. It is well known that subgradient methods have low convergence rates in high-dimensional spaces even for convex functions. However, if we consider a subclass of functions that satisfies sharp minimum condition and also use the Polyak step, we can guarantee a linear convergence rate of the subgradient method. In some cases, the values of the function or it’s subgradient may be available to the numerical method with some error. The accuracy of the solution provided by the numerical method depends on the magnitude of this error. In this paper, we investigate the behavior of the subgradient method with a Polyak step when inaccurate information about the objective function value or subgradient is used in iterations. We prove that with a specific choice of starting point, the subgradient method with some analogue of the Polyak step-size converges at a geometric progression rate on a class of $\mu$-weakly convex functions with a sharp minimum, provided that there is additive inaccuracy in the subgradient values. In the case when both the value of the function and the value of its subgradient at the current point are known with error, convergence to some neighborhood of the set of exact solutions is shown and the quality estimates of the output solution by the subgradient method with the corresponding analogue of the Polyak step are obtained. The article also proposes a subgradient method with a clipped step, and an assessment of the quality of the solution obtained by this method for the class of $\mu$-weakly convex functions with a sharp minimum is presented. Numerical experiments were conducted for the problem of low-rank matrix recovery. They showed that the efficiency of the studied algorithms may not depend on the accuracy of localization of the initial approximation within the required region, and the inaccuracy in the values of the function and subgradient may affect the number of iterations required to achieve an acceptable quality of the solution, but has almost no effect on the quality of the solution itself.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




