Результаты поиска по 'сходимость':
Найдено статей: 88
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 229-233
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 669-671
  3. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 879-881
    Editor’s note
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 879-881
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 521-523
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1341-1343
  8. Жлуктов С.В., Аксёнов А.А., Карасёв П.И.
    Моделирование байпасного ламинарно-турбулентного перехода в рамках $k-\varepsilon$ подхода
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 879-888

    Данная работа посвящена изучению возможности предсказать байпасный ламинарно-турбулентный переход с помощью несложной низкорейнольдсовой $k-\varepsilon$ модели турбулентности. Такая модель была разработана в ООО «ТЕСИС». Модель реализована в программном комплексе FlowVision. В статье обсуждаются идеи, воплощенные в этой модели. Возможность модели предсказывать ламинарно-турбулентный переход демонстрируется на известных тестовых задач T3B, T3A, T3A-.

    Zhluktov S.V., Aksenov A.A., Karasev P.I.
    Modeling bypass transition within $k-\varepsilon$ approach
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 879-888

    This article is dedicated to investigation of the possibility to predict bypass transition by means of an unsophisticated low-Reynolds $k-\varepsilon$ turbulence model. Such a model has been developed at TESIS Ltd. The model is implemented in the FlowVision software suit. The ideas implemented in the model are discussed in the article. The capability of the model to predict bypass transition is demonstrated on well-known test cases T3B, T3A, T3A-.

    Views (last year): 11. Citations: 8 (RSCI).
  9. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Gavrilov S.V., Matyushkin I.V.
    Statistical analysis of Margolus’s block-rotating mechanism cellular automation modeling the diffusion in a medium with discrete singularities
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1155-1175

    The generalization of Margolus’s block cellular automaton on a hexagonal grid is formulated. Statistical analysis of the results of probabilistic cellular automation for vast variety of this scheme solving the test task of diffusion is done. It is shown that the choice of the hexagon blocks is 25% more efficient than Y-blocks. It is shown that the algorithms have polynomial complexity, and the polynom degree lies within 0.6÷0.8 for parallel computer, and in the range 1.5÷1.7 for serial computer. The effects of embedded into automaton’s field defective cells on the rate of convergence are studied also.

    Views (last year): 8. Citations: 4 (RSCI).
  10. В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.

    Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.

    Views (last year): 9. Citations: 1 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"