All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Сравнение результатов применения различных эволюционных алгоритмов для решения задачи оптимизации маршрута беспилотных аппаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 45-62В данной работе проводится сравнительный анализ точного и эвристических алгоритмов, представленных методом ветвей и границ, генетическим и муравьиным алгоритмами соответственно, для поиска оптимального решения задачи коммивояжера на примере робота-курьера. Целью работы является определение времени работы, длины полученного маршрута и объема памяти, необходимого для работы программы, при использовании метода ветвей и границ и эволюционных эвристических алгоритмов. Также определяется наиболее целесообразный из перечисленных методов для применения в заданных условиях. В настоящей статье используются материалы проведенного исследования, реализованного в формате программы для ЭВМ, программный код для которой реализован на языке Python. В ходе исследования был выбран ряд критериев применимости алгоритмов (время работы программы, длина построенного маршрута и объем необходимой для работы программы памяти), получены результаты работы алгоритмов в заданных условиях и сделаны выводы о степени целесообразности применения того или иного алгоритма в различных заданных условиях работы робота-курьера. В ходе исследования выяснилось, что для малого количества точек ($\leqslant10$) метод ветвей и границ является наиболее предпочтительным, так как находит оптимальное решение быстрее. Однако при вычислении маршрута этим методом, при условии увеличения точек более 10, время работы растет экспоненциально. В таком случае более эффективные результаты дает эвристический подход с использованием генетического и муравьиного алгоритмов. При этом муравьиный алгоритм отличается решениями, наиболее близкими к эталонным, при увеличении точек более 16. Относительным недостатком его является наибольшая ресурсоемкость среди рассматриваемых алгоритмов. Генетический алгоритм дает схожие результаты, но при увеличении точек более 16 растет длина найденного маршрута относительно эталонного. Преимущество генетического алгоритма — его меньшая ресурсоемкость по сравнению с другими алгоритмами.
Практическая значимость данной статьи заключается в потенциальной возможности использования полученных результатов для оптимального решения логистических задач автоматизированной системой в различных сферах: складская логистика, транспортная логистика, логистика «последней мили» и т. д.
Ключевые слова: беспилотные аппараты, алгоритмы оптимизации, метод ветвей и границ, генетический алгоритм, муравьиный алгоритм, задача коммивояжера, логистические системы.
Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.
The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
Ключевые слова: гиперболические модели, обратный метод характеристик, многомерный узловой метод характеристик.
About one version of the nodal method of characteristics
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 29-44A variant of the inverse method of characteristics (IMH) is presented, in whose algorithm an additional fractional time step is introduced, which makes it possible to increase the accuracy of calculations due to a more accurate approximation of the characteristics. The calculation formulas of the modified method for the equations of the one-velocity model of a gas-liquid mixture are given, with the help of which one-dimensional and also flat test problems with self-similar solutions are calculated. When solving multidimensional problems, the original system of equations is split into a number of one-dimensional subsystems, for the calculation of which the inverse method of characteristics with a fractional time step is used. Using the proposed method, the following were calculated: the one-dimensional problem of the decay of an arbitrary discontinuity in a dispersed medium; a twodimensional problem of the interaction of a homogeneous gas-liquid flow with an obstacle with an attached shock wave, as well as a flow with a centered rarefaction wave. The results of numerical calculations of these problems are compared with self-similar solutions and their satisfactory agreement is noted. On the example of the Riemann problem with a shock wave, a comparison is made with a number of conservative, non-conservative, first and higher orders of accuracy schemes, from which, in particular, it follows that the presented calculation method, i. e. MIMC, quite competitive. Despite the fact that the application of MIMC requires many times more time than the original inverse method of characteristics (IMC), calculations can be carried out with an increased time step and, in some cases, more accurate results can be obtained. It is noted that the method with a fractional time step has advantages over the IMC in cases where the characteristics of the system are significantly curvilinear. For this reason, the use of MIMC, for example, for the Euler equations is inappropriate, since for the latter the characteristics within the time step differ little from straight lines.
-
Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.
Ключевые слова: нелинейное уравнение параболического типа, уравнение теплопроводности, метод нулевого поля, метод коллокаций, радиальные базисные функции, метод граничных элементов.
Solution to a two-dimensional nonlinear heat equation using null field method
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.
-
Новый алгоритм объединения решений подзадач в задаче коммивояжера
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 45-58Традиционные методы решения задачи коммивояжера не являются эффективными для задач высокой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кластеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение полученных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сигала для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центроидов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов. Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя количество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity propagation. Для проверки эффективности предложенного алгоритма были проведены численные эксперименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кластеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами. Результаты указывают на большую устойчивость качества конечного решения, полученным модифицированным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества решения подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм объединения редко влияет на степень этого улучшения.
Ключевые слова: задача коммивояжера, объединение циклов, метод k-средних, метод распространения близости, декомпозиция.
Solving traveling salesman problem via clustering and a new algorithm for merging tours
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 45-58Traditional methods for solving the traveling salesman problem are not effective for high-dimensional problems due to their high computational complexity. One of the most effective ways to solve this problem is the decomposition approach, which includes three main stages: clustering vertices, solving subproblems within each cluster and then merging the obtained solutions into a final solution. This article focuses on the third stage — merging cycles of solving subproblems — since this stage is not always given sufficient attention, which leads to less accurate final solutions of the problem. The paper proposes a new modified Sigal algorithm for merging cycles. To evaluate its effectiveness, it is compared with two algorithms for merging cycles — the method of connecting midpoints of edges and an algorithm based on closeness of cluster centroids. The dependence of quality of solving subproblems on algorithms used for merging cycles is investigated. Sigal’s modified algorithm performs pairwise clustering and minimizes total distance. The centroid method focuses on connecting clusters based on closeness of centroids, and an algorithm using mid-points estimates the distance between mid-points of edges. Two types of clustering — k-means and affinity propagation — were also considered. Numerical experiments were performed using the TSPLIB dataset with different numbers of cities and topologies to test effectiveness of proposed algorithm. The study analyzes errors caused by the order in which clusters were merged, the quality of solving subtasks and number of clusters. Experiments show that the modified Sigal algorithm has the smallest median final distance and the most stable results compared to other methods. Results indicate that the quality of the final solution obtained using the modified Sigal algorithm is more stable depending on the sequence of merging clusters. Improving the quality of solving subproblems usually results in linear improvement of the final solution, but the pooling algorithm rarely affects the degree of this improvement.
-
Математические модели и методы организации вычислений в мультипроцессорных системах
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 423-436В работе предложена и исследована математическая модель распределенной вычислительной системы параллельных взаимодействующих процессов, конкурирующих за использование ограниченного числа копий структурированного программного ресурса. В случаях неограниченного и ограниченного параллелизма по числу процессоров мультипроцессорной системы решены задачи определения оперативных и точных значений времени выполнения неоднородных и одинаково распределенных конкурирующих процессов в синхронном режиме, при котором обеспечивается линейный порядок выполнения блоков структурированного программного ресурса внутри каждого из процессов без задержек. Полученные результаты можно использовать при сравнительном анализе математических соотношений для вычисления времени реализации множества параллельных распределенных взаимодействующих конкурирующих процессов, математическом исследовании эффективности и оптимальности организации распределенных вычислений, решении задач построения оптимальной компоновки блоков одинаково распределенной системы, нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений. Предложенные модели и методы открывают новые перспективы при решении проблем оптимального распределения ограниченных вычислительных ресурсов, синхронизации множества взаимодействующих конкурирующих процессов, минимизации системных затрат при выполнении параллельных распределенных процессов.
Ключевые слова: распределенная вычислительная система, процесс, программный ресурс, структурирование, конвейеризация, неоднородная система, одинаково распределенная система, неограниченный параллелизм, ограниченный параллелизм.
Mathematical models and methods for organizing calculations in SMP systems
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 423-436The paper proposes and investigates a mathematical model of a distributed computing system of parallel interacting processes competing for the use of a limited number of copies of a structured software resource. In cases of unlimited and limited parallelism by the number of processors of a multiprocessor system, the problems of determining operational and exact values of the execution time of heterogeneous and identically distributed competing processes in a synchronous mode are solved, which ensures a linear order of execution of blocks of a structured software resource within each of the processes without delays. The obtained results can be used in a comparative analysis of mathematical relationships for calculating the implementation time of a set of parallel distributed interacting competing processes, a mathematical study of the efficiency and optimality of the organization of distributed computing, solving problems of constructing an optimal layout of blocks of an identically distributed system, finding the optimal number of processors that provide the directive execution time of given volumes of computations. The proposed models and methods open up new prospects for solving problems of optimal distribution of limited computing resources, synchronization of a set of interacting competing processes, minimization of system costs when executing parallel distributed processes.
-
Аппроксимация решения нестационарного уравнения теплопроводности методом вероятностных непрерывных асинхронных клеточных автоматов для одномерного случая
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 293-301В статье рассматривается решение задач теплопроводности с помощью метода непрерывных асинхронных клеточных автоматов. Продемонстрировано согласование распределения температуры в образце между клеточно-автоматной моделью и точным аналитическим решением уравнения теплопереноса в определенный момент времени, что говорит о целесообразном использовании данного метода моделирования. Получена зависимость между временем одного клеточно-автоматного взаимодействия и размерностью клеточно-автоматного поля.
Approximation of the solution of the non-stationary equation of heat conductivity by the method of probabilistic continuous asynchronous cellular automats for a one-dimensional case
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 293-301Views (last year): 10. Citations: 4 (RSCI).The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.
-
Об аналитико-численном методе моделирования процессов теплопередачи в $p$-мерных областях сложной геометрии
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 865-873На основе аналитико-численного метода проводится численное моделирование $p$-мерных процессов теплопередачи в областяхсло жной геометрии, для которых применение традиционных методов затруднено. С помощью предлагаемого метода модель преобразуется к виду, удобному для численного исследования с применением традиционныхмет одов численного анализа. Приводятся результаты численныхэк спериментов, иллюстрирующие эффективность предлагаемого метода. Проводится сравнительный анализ полученныхре зультатов, вычислительных результатов другихав торов и аналитических зависимостей ряда методов, позволяющих найти точное решение для некоторых классов задач.
Ключевые слова: аналитико-численный метод, численное моделирование, теплопередача, неограниченная область.
On an analytic-numerical method to simulate heat transfer process on $p$-dimensional complex geometry domains
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 865-873Views (last year): 1.The article presents an analytical-numerical method to simulate $p$-dimentional heat transfer processes on complex geometry domains when conventional methods are not applicable. The model is converted by the proposed method so that conventional numerical analysis methods is applied to the numerical research. The results of numerical experiments are given to demonstrate the effectiveness of the proposed method. The obtained results, other authors’ numerical results and exact analytical solutions, known for a class of problems, is compared.
-
Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.
Ключевые слова: системы нелинейных уравнений, нелинейная регрессия, метод Гаусса–Ньютона, алгоритм Левенберга–Марквардта, методы доверительной области, невыпуклая оптимизация, неточное проксимальное отображение, неточный оракул, условие Поляка–Лоясиевича, оценка сложности.
Modified Gauss–Newton method for solving a smooth system of nonlinear equations
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.
-
Численное моделирование течения в двухмерном плоском диффузоре на основе двухжидкостной модели турбулентности
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1149-1160В статье представлены результаты численного исследования структуры течения в двухмерном плоском диффузоре. Особенностью диффузоров является то, что в них наблюдается сложное анизотропное турбулентное течение, которое возникает за счет рециркуляционных потоков. Турбулентные модели RANS, в основе которых лежит гипотеза Буссинеска, не способны описывать с достаточной точностью течение в диффузорах. Потому что гипотеза Буссинеска основана на изотропной турбулентности. Поэтому для расчета анизотропных турбулентных течений привлекаются модели, в которых не используется данная гипотеза. Одним из таких направлений в моделировании турбулентности являются методы рейнольдсовых напряжений. Эти методы сложны и требуют довольно больших вычислительных ресурсов. В работе для исследования течения в плоском диффузоре использована сравнительно недавно разработанная двухжидкостная модель турбулентности. Данная модель разработана на основе двухжидкостного подхода к проблеме турбулентности. В отличие от подхода Рейнольдса двухжидкостный подход позволяет получить замкнутую систему уравнений турбулентности с использованием динамики двух жидкостей. Следовательно, если в RANS-моделях для замыкания используются эмпирические уравнения, то в двухжидкостной модели используемые уравненияя вляются точными уравнениями динамики. Одно из главных преимуществ двухжидкостной модели заключаетсяв том, что она способна описывать сложные анизотропные турбулентные течения. В работе полученные численные результаты для профилей продольной скорости, турбулентных напряжений в различных сечениях канала, а также коэффициента трениясравнив аются с известными экспериментальными данными. Для демонстрации достоинства использованной модели турбулентности представлены и численные результаты метода рейнольдсовых напряжений EARSM. Для численной реализации систем уравнений двухжидкостной модели использована нестационарная система уравнений, решение которой асимптотически приближалось к стационарному решению. Дляэтой цели использована конечно-разностная схема, где вязкостные члены аппроксимировались центральной разностью неявным образом, а для конвективных членов использована явная схема против потока второго порядка точности. Результаты получены для числа Рейнольдса Re = 20 000. Показано, что двухжидкостная модель, несмотря на использование равномерной расчетной сетки без сгущенияо коло стенок, способна давать более точное решение, чем достаточно сложный метод рейнольдсовых напряжений с большим разрешением расчетных сеток.
Ключевые слова: уравнения Навье – Стокса, диффузор, отрывное течение, двухжидкостная модель, метод контрольного объема, турбулентные напряжения.
Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1149-1160The article presents the results of a numerical study of the flow structure in a two-dimensional flat diffuser. A feature of diffusers is that they have a complex anisotropic turbulent flow, which occurs due to recirculation flows. The turbulent RANS models, which are based on the Boussinesq hypothesis, are not able to describe the flow in diffusers with sufficient accuracy. Because the Boussinesq hypothesis is based on isotropic turbulence. Therefore, to calculate anisotropic turbulent flows, models are used that do not use this hypothesis. One of such directions in turbulence modeling is the methods of Reynolds stresses. These methods are complex and require rather large computational resources. In this work, a relatively recently developed two-fluid turbulence model was used to study the flow in a flat diffuser. This model is developed on the basis of a two-fluid approach to the problem of turbulence. In contrast to the Reynolds approach, the two-fluid approach allows one to obtain a closed system of turbulence equations using the dynamics of two fluids. Consequently, if empirical equations are used in RANS models for closure, then in the two-fluid model the equations used are exact equations of dynamics. One of the main advantages of the two-fluid model is that it is capable of describing complex anisotropic turbulent flows. In this work, the obtained numerical results for the profiles of the longitudinal velocity, turbulent stresses in various sections of the channel, as well as the friction coefficient are compared with the known experimental data. To demonstrate the advantages of the used turbulence model, the numerical results of the Reynolds stress method EARSM are also presented. For the numerical implementation of the systems of equations of the two-fluid model, a non-stationary system of equations was used, the solution of which asymptotically approached the stationary solution. For this purpose, a finite-difference scheme was used, where the viscosity terms were approximated by the central difference implicitly, and for the convective terms, an explicit scheme against the flow of the second order of accuracy was used. The results are obtained for the Reynolds number Re = 20 000. It is shown that the two-fluid model, despite the use of a uniform computational grid without thickening near the walls, is capable of giving a more accurate solution than the rather complex Reynolds stress method with a high resolution of computational grids.
-
Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.
Ключевые слова: динамика разреженных газов, бинарные газовые смеси, кинетическое уравнение Больцмана, проекционный метод, численное моделирование, структура ударной волны.
Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




