All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Моделирование отклика поликристаллических сегнетоэлектриков на электрические и механические поля большой интенсивности
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 93-113Представлена математическая модель, описывающая необратимые процессы поляризации и деформирования поликристаллических сегнетоэлектриков во внешних электрических и механических полях большой интенсивности, вследствие чего изменяется внутренняя структура и меняются свойства материала. Необратимые явления моделируются в трехмерной постановке для случая одновременного воздействия электрического поля и механических напряжений. Объектом исследования является представительный объем, в котором исследуются остаточные явления в виде возникающих индуцированных и необратимых частей вектора поляризации и тензора деформации. Основной задачей моделирования является построение определяющих соотношений, связывающих между собой вектор поляризации и тензор деформации, с одной стороны, и вектор электрического поля и тензор механических напряжений, с другой стороны. Рассмотрен общий случай, когда направление электрического поля может не совпадать ни с одним из главных направлений тензора механических напряжений. Для обратимых составляющих определяющие соотношения построены в виде линейных тензорных уравнений, в которых упругие и диэлектрические модули зависят от остаточной деформации, а пьезоэлектрические модули - от остаточной поляризации. Определяющие соотношения для необратимых частей строятся в несколько этапов. Вначале построена вспомогательная модель идеального или безгистерезисного случая, когда все векторы спонтанной поляризации могут поворачиваться в поле внешних сил без взаимного влияния друг на друга. Предложен способ подсчета результирующих значений предельно возможных значений поляризации и деформации идеального случая в виде поверхностных интегралов по единичной сфере с плотностью распределения, полученной из статистического закона Больцмана. Далее сделаны оценки энергетических затрат, необходимых для слома механизмов закрепления доменов, и подсчитана работа внешних полей в реальном и идеальном случаях. На основании этого выведен энергетический баланс и получены определяющие соотношения для необратимых составляющих в виде уравнений в дифференциалах. Разработана схема численного решения этих уравнений для определения текущих значений необратимых искомых характеристик в заданных электрических и механических полях. Для циклических нагрузок построены диэлектрические, деформационные и пьезоэлектрические гистерезисные кривые.
Разработанная модель может быть имплантирована в конечно-элементный комплекс для расчета неоднородных остаточных полей поляризации и деформирования с последующим определением физических модулей неоднородно поляризованной керамики как локально анизотропного тела.
Ключевые слова: сегнетоэлектрики, домены, кристаллиты, электрическое поле, механические напряжения, спонтанная и остаточная поляризация, деформация, гистерезис, физические характеристики.
Modeling the response of polycrystalline ferroelectrics to high-intensity electric and mechanical fields
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 93-113A mathematical model describing the irreversible processes of polarization and deformation of polycrystalline ferroelectrics in external electric and mechanical fields of high intensity is presented, as a result of which the internal structure changes and the properties of the material change. Irreversible phenomena are modeled in a three-dimensional setting for the case of simultaneous action of an electric field and mechanical stresses. The object of the research is a representative volume in which the residual phenomena in the form of the induced and irreversible parts of the polarization vector and the strain tensor are investigated. The main task of modeling is to construct constitutive relations connecting the polarization vector and strain tensor, on the one hand, and the electric field vector and mechanical stress tensor, on the other hand. A general case is considered when the direction of the electric field may not coincide with any of the main directions of the tensor of mechanical stresses. For reversible components, the constitutive relations are constructed in the form of linear tensor equations, in which the modules of elasticity and dielectric permeability depend on the residual strain, and the piezoelectric modules depend on the residual polarization. The constitutive relations for irreversible parts are constructed in several stages. First, an auxiliary model was constructed for the ideal or unhysteretic case, when all vectors of spontaneous polarization can rotate in the fields of external forces without mutual influence on each other. A numerical method is proposed for calculating the resulting values of the maximum possible polarization and deformation values of an ideal case in the form of surface integrals over the unit sphere with the distribution density obtained from the statistical Boltzmann law. After that the estimates of the energy costs required for breaking down the mechanisms holding the domain walls are made, and the work of external fields in real and ideal cases is calculated. On the basis of this, the energy balance was derived and the constitutive relations for irreversible components in the form of equations in differentials were obtained. A scheme for the numerical solution of these equations has been developed to determine the current values of the irreversible required characteristics in the given electrical and mechanical fields. For cyclic loads, dielectric, deformation and piezoelectric hysteresis curves are plotted.
The developed model can be implanted into a finite element complex for calculating inhomogeneous residual polarization and deformation fields with subsequent determination of the physical modules of inhomogeneously polarized ceramics as a locally anisotropic body.
-
Молекулярно-динамическое исследование механических свойств кристалла платины, армированного углеродной нанотрубкой при одноосном растяжении
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1069-1080В этой статье рассматриваются механические свойства платины, армированной углеродной нанотрубкой (УНТ), в условиях одноосной растягивающей нагрузки посредством метода молекулярной динамики. Обзор текущих расчетных и экспериментальных исследований подчеркивает преимущества композитов, армированных углеродными нанотрубками с структурной точки зрения. Однако количественные и качественные исследования влияния углеродной нанотрубки на улучшения свойств композитов все еще редки. Выбор композита обусловлен перспективой применения платиновых сплавов во многих сферах, где они могут подвергаться механическим воздействиям, в том числе и в биосовместимых системах. Армирование платины (Pt) с помощью УНТ может обеспечить дополнительные возможности для вживления имплантатов и при этом достичь требуемых механических характеристик.
Структура композита состояла из кристалла Pt с гранецентрированной кубической решеткой с постоянной 3,92 Å и углеродной нанотрубки. Матрица кристалла платины имеет форму куба с размерами $43,1541 Å \times 43,1541 Å \times 43,1541 Å$. Размер отверстия в середине платиновой матрицы определяется радиусом углеродной нанотрубки типа «зигзаг» (8,0), который составляет 2,6 Å. Углеродная нанотрубка помещается в отверстие радиусом 4,2 Å. При таких параметрах взаимной конфигурации наблюдался минимум энергии взаимодействия. Рассматриваемая модель содержит 320 атомов углерода и 5181 атом платины. Объемная доля углерода в композите Pt-C составляет 5,8%. На первом этапе исследования производились анализ влияния скорости деформации на соотношение «напряжение–деформация» и изменение энергии в процессе одноосного растяжения композита Pt-C.
Анализ влияния скорости деформации показал, что предел текучести при растяжении увеличивается с увеличением скоростей деформации, а модуль упругости имеет, скорее, тенденцию к уменьшению при увеличении скорости деформации. Данная работа также демонстрирует, что по сравнению с чистой платиной модуль Юнга увеличился на 40% для Pt-C, а эластичность композита меньше на 42,3%. В целом подробно рассмотрены механизмы разрушения, включая пластическую деформацию в атомистическом масштабе.
Ключевые слова: метод молекулярной динамики, механические свойства, углеродная нанотрубка, армирование, композит.
Molecular dynamics study of the mechanical properties of a platinum crystal reinforced with carbon nanotube under uniaxial tension
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1069-1080This article discusses the mechanical properties of carbon nanotube (CNT)-reinforced platinum under uniaxial tensile loading using the molecular dynamics method. A review of current computational and experimental studies on the use of carbon nanotube-reinforced composites from a structural point of view. However, quantitative and qualitative studies of CNTs to improve the properties of composites are still rare. Composite selection is a promising application for platinum alloys in many cases where they may be subjected to mechanical stress, including in biocompatibility sources. Pt-reinforced with CNTs may have additional possibilities for implantation of the implant and at the same time obtain the required mechanical characteristics.
The structure of the composite is composed of a Pt crystal with a face-centered cubic lattice with a constant of 3.92 Å and a carbon nanotube. The Pt matrix has the shape of a cube with dimensions of $43.1541 Å \times 43.1541 Å \times 43.1541 Å$. The hole size in the average platinum dimension is the radius of the carbon nanotube of the «zigzag» type (8,0), which is 2.6 Å. A carbon nanotube is placed in a hole with a radius of 4.2 Å. At such parameters, the maximum energy level was mutually observed. The model under consideration is contained in 320 atomic bombs and 5181 atomic platinum. The volume fraction of deaths in the Pt-C composite is 5.8%. At the first stage of the study, the strain rate was analyzed for stress-strain and energy change during uniaxial action on the Pt-C composite.
Analysis of the strain rate study showed that the consumption yield strength increases with high strain rate, and the elasticity has increased density with decreasing strain rate. This work also increased by 40% for Pt-C, the elasticity of the composite decreased by 42.3%. In general, fracture processes are considered in detail, including plastic deformation on an atomistic scale.
-
Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.
Ключевые слова: моделирование, пластина, нелинейно-упрочняющееся основание, пульсирующая вязкая жидкость, нелинейные колебания, гидроупругий отклик, фазовый сдвиг.
Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.
-
Методы моделирования композитов, армированных углеродными нанотрубками: обзор и перспективы
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1143-1162Изучение структурной характеристики композитов и наноструктур имеет фундаментальное значение в материаловедении. Теоретическое и численное моделирование и симуляция механических свойств наноструктур является основным инструментом, позволяющим проводить комплексные исследования, которые сложно проводить только экспериментально. Одним из примеров наноструктур, рассматриваемых в данной работе, являются углеродные нанотрубки (УНТ), которые обладают хорошими тепловыми и электрическими свойствами, а также низкой плотностью и высоким модулем Юнга, что делает их наиболее подходящим армирующим элементом для композитов, для потенциального применения в аэрокосмической, автомобильной, металлургической и биомедицинской промышленности. В данном обзоре мы рассмотрели методы моделирования, механические свойства и применение композитов с металлической матрицей, армированных УНТ. Также рассмотрены некоторые методы моделирования, применимые при исследованиях композитов с полимерными и металлическими матрицами. Рассмотрены такие методы, как метод градиентного спуска, метод Монте-Карло, методы молекулярной статики и молекулярной динамики. Было показано, что молекулярно-динамическое моделирование отлично подходит для создания различных систем композиционных материалов и изучения свойств композитов с металлической матрицей, армированных углеродными наноматериалами, в различных условиях. В данной работе кратко представлены наиболее часто используемые потенциалы, описывающие взаимодействие систем моделирования композитов. Правильный выбор потенциалов взаимодействия частей композитов напрямую влияет на описание изучаемого явления. Детализирована и обсуждена зависимость механических свойств композитов от объемной доли, диаметра, ориентации и количества УНТ. Показано, что объемная доля углеродных нанотрубок имеет существенное влияние на предел прочности и модуль Юнга. Диаметр УНТ оказывает большее значение на предел прочности, нежели на модуль упругости. Также приведен в пример работы, в которых изучается влияние длины УНТ на механические свойства композитов. В заключении нами предложены перспективы направления развития молекулярно-динамического моделирования в отношении композитов с металлической матрицей, армированных углеродными наноматериалами.
Ключевые слова: метод молекулярной динамики, моделирование, механические свойства, углеродная нанотрубка, армирование, композиты с металлической матрицей.
Methods for modeling composites reinforced with carbon nanotubes: review and perspectives
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1143-1162The study of the structural characteristics of composites and nanostructures is of fundamental importance in materials science. Theoretical and numerical modeling and simulation of the mechanical properties of nanostructures is the main tool that allows for complex studies that are difficult to conduct only experimentally. One example of nanostructures considered in this work are carbon nanotubes (CNTs), which have good thermal and electrical properties, as well as low density and high Young’s modulus, making them the most suitable reinforcement element for composites, for potential applications in aerospace, automotive, metallurgical and biomedical industries. In this review, we reviewed the modeling methods, mechanical properties, and applications of CNT-reinforced metal matrix composites. Some modeling methods applicable in the study of composites with polymer and metal matrices are also considered. Methods such as the gradient descent method, the Monte Carlo method, methods of molecular statics and molecular dynamics are considered. Molecular dynamics simulations have been shown to be excellent for creating various composite material systems and studying the properties of metal matrix composites reinforced with carbon nanomaterials under various conditions. This paper briefly presents the most commonly used potentials that describe the interactions of composite modeling systems. The correct choice of interaction potentials between parts of composites directly affects the description of the phenomenon being studied. The dependence of the mechanical properties of composites on the volume fraction of the diameter, orientation, and number of CNTs is detailed and discussed. It has been shown that the volume fraction of carbon nanotubes has a significant effect on the tensile strength and Young’s modulus. The CNT diameter has a greater impact on the tensile strength than on the elastic modulus. An example of works is also given in which the effect of CNT length on the mechanical properties of composites is studied. In conclusion, we offer perspectives on the direction of development of molecular dynamics modeling in relation to metal matrix composites reinforced with carbon nanomaterials.
-
Распространение волн Рэлея при косом ударе метеорита о поверхность земли и их воздействие на здания и сооружения
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 981-992В данной работе решается динамическая задача теории упругости о совместном нормальном и касательном воздействии на полупространство. С помощью этой задачи моделируется процесс наклонного падения метеорита на земную поверхность. Проведены исследования и расчеты поверхностной волны Рэлея. Полученное решение использовано в качестве внешнего воздействия на высотное здание, находящееся на некотором расстоянии от места падения для оценки безопасности и устойчивости его конструкции. Проведены численные эксперименты на основе конечно-элементного программного комплекса STARK ES. Рассчитаны амплитуды колебаний верхних этажей выбранного объекта при таком динамическом воздействии. Также проведено ихсистема тическое сравнение с результатами расчета при колебаниях основания, соответствующихст андартной акселерограмме 8-балльного землетрясения.
Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992Views (last year): 3. Citations: 2 (RSCI).In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to standard a 8-point earthquake accelerograms, was made.
-
Конечно-элементный статический анализ механического состояния костного регенерата на различных этапах консолидации в модельной системе остеосинтеза аппаратом Илизарова
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 427-440Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.
С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.
Ключевые слова: большеберцовая кость, аппарат Илизарова, чрескостный остеосинтез, костная мозоль, метод конечных элементов, напряженно-деформированное состояние, прочность.
Computer analysis of the bone regeneration strength in a model system of osteosynthesis by the Ilizarov fixator with static loads
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 427-440Views (last year): 3.The adequate complexity three-dimensional finite element model of biomechanical system with space, shell and beam-type elements was built. The model includes the Ilizarov fixator and tibial bone’s simulator with the regenerating tissue at the fracture location. The proposed model allows us to specify the orthotropic elastic properties of tibial bone model in cortical and trabecular zones. It is also possible to change the basic geometrical and mechanical characteristics of biomechanical system, change the finite element mash density and define the different external loads, such as pressure on the bone and compression or distraction between the repositioned rings of Ilizarov device.
By using special APDL ANSYS program macros the mode of deformation was calculated in the fracture zone for various static loads on the simulator bone, for compression or distraction between the repositioned rings and for various mechanical properties during different stages of the bone regenerate formation (gelatinous, cartilaginous, trabecular and cortical bone remodeling). The obtained results allow us to estimate the permissible values of the external pressure on the bone and of the displacements of the Ilizarov fixator rings for different stages of the bone regeneration, based on the admittance criterion for the maximum of the stresses in the callus. The presented data can be used in a clinical condition for planning, realization and monitoring of the power modes for transosseous osteosynthesis with the external Ilizarov fixator.
-
Кластерные модели молекулярных моторов:кинезин и миозин V
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 747-760Предложена полуфеноменологическая модель функционирования двух молекулярных моторов — кинезина и миозина V, играющих важнейшую роль во внутриклеточном транспорте. Исследована временная динамика изменения характерных геометрических параметров и упругих напряжений, возникающих при движении моторов. Определены скорости передвижения кинезина и миозина V и их зависимость от концентрации АТФ в среде.
Cluster models of molecular motors: kinesin and myosin V
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 747-760Views (last year): 2. Citations: 1 (RSCI).We present a semiphenomenological model of the two molecular motors: kinesin and myosin V, which play a great role in intracellular transport. The temporal dynamics of changes in the characteristic geometric parameters and the elastic stresses generated during the movement of motors is studied. The rates of movement of kinesin and myosin V, and their dependence on the concentration of ATP are discussed.
-
О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.
Ключевые слова: сейсморазведка, углеводороды, формула Кирхгофа, акустические волны, упругие волны, численное моделирование.
About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 761-771Views (last year): 11.In this paper we present Rayleigh formulas obtained from Kirchhoff integral formulas, which can later be used to obtain migration images. The relevance of the studies conducted in the work is due to the widespread use of migration in the interests of seismic oil and gas seismic exploration. A special feature of the work is the use of an elastic approximation to describe the dynamic behaviour of a geological environment, in contrast to the widespread acoustic approximation. The proposed approach will significantly improve the quality of seismic exploration in complex cases, such as permafrost and shelf zones of the southern and northern seas. The complexity of applying a system of equations describing the state of a linear-elastic medium to obtain Rayleigh formulas and algorithms based on them is a significant increase in the number of computations, the mathematical and analytical complexity of the resulting algorithms in comparison with the case of an acoustic medium. Therefore in industrial seismic surveys migration algorithms for the case of elastic waves are not currently used, which creates certain difficulties, since the acoustic approximation describes only longitudinal seismic waves in geological environments. This article presents the final analytical expressions that can be used to develop software systems using the description of elastic seismic waves: longitudinal and transverse, thereby covering the entire range of seismic waves: longitudinal reflected PP-waves, longitudinal reflected SP-waves, transverse reflected PS-waves and transverse reflected SS-waves. Also, the results of comparison of numerical solutions obtained on the basis of Rayleigh formulas with numerical solutions obtained by the grid-characteristic method are presented. The value of this comparison is due to the fact that the method based on Rayleigh integrals is based on analytical expressions, while the grid-characteristic method is a method of numerical integration of solutions based on a calculated grid. In the comparison, different types of sources were considered: a point source model widely used in marine and terrestrial seismic surveying and a flat wave model, which is also sometimes used in field studies.
-
Приближенная модель осесимметричного течения несжимаемой жидкости в бесконечно длинном круглом цилиндре, стенки которого составлены из упругих колец, основанная на решениях уравнения Кортевега – де Фриза
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 375-394Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.
Ключевые слова: приближенная модель кровотока, сосуд из упругих колец, уравнение Кортевега – де Фриза, кноидальная волна, солитон, вырожденная кноидальная волна, задача Коши.
Approximate model of an axisymmetric flow of a non-compressible fluid in an infinitely long circular cylinder, the walls of which are composed of elastic rings, based on solutions of the Korteweg – de Vries equation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 375-394An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.
-
Моделирование вида структурного элемента гибких тканых композитов при статическом растяжении с применением метода конечных элементов в ANSYS
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 113-120В статье приведен пример конечно-элементного моделирования структурного элемента гибких тканых композитов. Армирующей тканью является полотняное переплетение нитей из трощеного жгута. Нити представляются упругим материалом. Матрицей рассматриваемого материала является мягкий полимер с возможностью возникновения необратимых деформаций. Учтена возможность возникновения повреждений в структуре материала при высоких нагрузках. Построена полная диаграмма деформирования при одноосном растяжении. Достоверность модели подтверждается проведенными натурными экспериментами.
Ключевые слова: гибкий тканый композиционный материал, диаграмма деформирования, накопление повреждений, предварительное повреждение, метод конечных элементов, эксперимент, полотняние переплетение, структура переплетения.
Modeling the structural element of flexible woven composites under static tension using the method of finite element in ANSYS
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 113-120Views (last year): 1. Citations: 7 (RSCI).The article gives the example of finite-element modeling of the structural element is a flexible woven composites. The reinforcing cloth is a plain weave of threads of assembled harness. Threads are represented by elastic material. The matrix of the material is a soft polymer with the possibility of irreversible deformations. Taken into account the possibility of the occurrence of damage in the structure of the material under high loads. Built detailed diagram of deformation under uniaxial tension. The accuracy of the model is conrmed by in situ experiments.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




