All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Мультистабильность для математической модели тритрофической системы на неоднородном ареале
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.
Ключевые слова: математическая экология, диффузия, таксис, теория косимметрии, жертва – хищник – суперхищник.
Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.
-
Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.
Ключевые слова: квадратичная дискретная популяционная модель с запаздыванием, функция стохастической чувствительности.
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Views (last year): 3. Citations: 1 (RSCI).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
Модель согласования экономических интересов дуополистов при формировании ценовой политики
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1309-1329Предложена модель рыночного ценообразования фирм-дуополистов, представляющая динамику цен в виде четырехпараметрического двумерного отображения. Показано, что неподвижная точка данного отображения совпадает с точкой локального равновесия цен по Нэшу при игровом взаимодействии фирм. Численно выявлены бифуркации неподвижной точки, показан сценарий перехода от периодического режима к хаотическому через удвоение периода. Для обеспечения устойчивости локального равновесия цен по Нэшу предложен механизм управления динамикой цен на рынке, позволяющий стабилизировать хаотические траектории цен и согласовать экономические интересы фирм в процессе формирования их ценовой политики.
Ключевые слова: двумерное отображение, устойчивость неподвижной точки, бифуркационный анализ, ценовая конкуренция, управление рыночными ценами, стратегическое взаимодействие фирм, равновесие по Нэшу.
Model for economic interests agreement in duopoly’s making price decisions
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1309-1329Views (last year): 10. Citations: 2 (RSCI).The model of market pricing in duopoly describing the prices dynamics as a two-dimensional map is presented. It is shown that the fixed point of the map coincides with the local Nash-equilibrium price in duopoly game. There have been numerically identified a bifurcation of the fixed point, shown the scheme of transition from periodic to chaotic mode through a doubling period. To ensure the sustainability of local Nashequilibrium price the controlling chaos mechanism has been proposed. This mechanism allows to harmonize the economic interests of the firms and to form the balanced pricing policy.
-
О динамике косимметричных систем хищников и жертв
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.
Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.
Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.
Ключевые слова: математическая экология, теория косимметрии, сосуществование конкурентов, хищник–жертва, функциональный отклик Холлинга, эффект Олли.
Regarding the dynamics of cosymmetric predator – prey systems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813Views (last year): 12. Citations: 3 (RSCI).To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.
We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.
The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.
-
Методологический подход к моделированию и прогнозированию воздействия пространственной неоднородности процессов распространения COVID-19 на экономическое развитие регионов России
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 629-648Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.
Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.
В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.
Ключевые слова: пространственная неоднородность, пространственная автокорреляция, кластеризация, локальный индекс Морана, межрегиональные взаимосвязи, коронавирусная инфекция, пространственно-временное моделирование, панельные данные, региональные системы.
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.
Ключевые слова: половая структура, плотностно-зависимые факторы, дискретная во времени модель, оценка параметров, популяционная динамика.
A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.
-
Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.
Ключевые слова: электрофизиология, детальные модели, концептуальные модели, жесткие системы, численные методы.
Application of simplified implicit Euler method for electrophysiological models
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.
-
О моделях шины, учитывающих как деформированное состояние, так и эффекты сухого трения в области контакта
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 163-173Предложена новая приближенная модель качения деформируемого колеса с пневматиком, позволяющая учесть как усилия в пневматике, так и влияние сил сухого трения на устойчивость прямолинейного качения колеса при прогнозировании явления шимми. Модель основана на теории сухого трения с комбинированнойкине матикойотно сительного движения соприкасающихся тел, т. е. при одновременном качении, скольжении и верчении при учете реальнойф ормы области контакта и распределения контактного давления. Главный вектор и главный момент сил, возникающих при контактном взаимодействии с сухим трением, определяются путем интегрирования по области контакта. При этом контактное давление покоя при нулевых скоростях относительного поступательного движения и верчения и в отсутствие качения определяется из решения статической контактной задачи для пневматика с учетом его реальной структуры и физических свойств материалов. В работе использована конечно-элементная модель типового пневматика с продольным протектором. Расчет осуществлен при фиксированном внутреннем давлении наддува, заданной вертикальной силе и коэффициенте трения покоя, равном 0.5. Получены также решения задач о напряженно-деформированном состоянии пневматика при кинематическом нагружении в боковом направлении и при скручивании относительно вертикальной оси. Показано, что с достаточной степенью точности контактное взаимодействие пневматика с абсолютно жесткой опорной поверхностью можно представить в виде двух этапов — адгезии и проскальзывания, при этом, однако, форма пятна контакта остается близкой к круговой. Построены диаграммы, аппроксимирующие численные решения, для боковой силы и момента; на начальном участке взаимодействия зависимости линейны и соответствуют упругой деформации пневматика, на втором участке величины силы и момента постоянны и соответствуют силе сухого трения и моменту трения верчения. Для последних участков получены приближенные выражения для продольной и боковой силы трения, а также момента трения верчения в соответствии с теорией сухого трения с комбинированной кинематикой. Полученная модель может трактоваться как комбинация модели упруго деформируемого колеса по Келдышу, катящегося без проскальзывания, и жесткого колеса по Климову –Журавлёву, взаимодействующего с опорой посредством сил сухого трения.
Ключевые слова: трение сухое, кинематика комбинированная, шины пневматические, состояние деформированное.
On tire models accounting for both deformed state and coupled dry friction in a contact spot
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 163-173A proposed approximate model of the rolling of a deforming wheel with a pneumatic tire allows one to account as well forces in tires as the effect of the dry friction on the stability of the rolling upon the shimmy phenomenon prognosis. The model os based on the theory of the dry friction with combined kinematics of relative motion of interacting bodies, i. e. under the condition of simultaneous rolling, sliding, and spinning with accounting for the real shape of a contact spot and contact pressure distribution. The resultant vector and couple of the forces generated by the contact interaction with dry friction are defined by integration over the contact area, whereas the static contact pressure under the conditions of vanishing velocity of sliding and angular velocity of spinning is computed after the finite-element solution for the statical contact of a pneumatic with a rigid road with accounting forreal internal structure and properties of a tire. The solid finite element model of a typical tire with longitudinal thread is used below as a background. Given constant boost pressure, vertical load and static friction factor 0.5 the numerical solution is constructed, as well as the appropriate solutions for lateral and torsional kinematic loading. It is shown that the contact interaction of a pneumatic tire and an absolutely rigid road could be represented without crucial loss of accuracy as two typical stages, the adhesion and the slip; the contact area shape remains nevertheless close to a circle. The approximate diagrams are constructed for both lateral force and friction torque; on the initial stage the diagrams are linear so that corresponds to the elastic deformation of a tire while on the second stage both force and torque values are constant and correspond to the dry friction force and torque. For the last stages the approximate formulae for the longitudinal and lateral friction force and the friction torque are constructed on the background of the theory of the dry friction with combined kinematics. The obtained model can be treated as a combination of the Keldysh model of elastic wheel with no slip and spin and the Klimov rigid wheel model interacting with a road by dry friction forces.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Ключевые слова: пиролиз пропана, математическая модель, химическая кинетика, анализ чувствительности, анализ идентифицируемости.
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




