All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
NLP-based automated compliance checking of data processing agreements against General Data Protection Regulation
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1667-1685As it stands in the contemporary world, compliance with regulations concerning data protection such as GDPR is central to organizations. Another important issue analysis identified is the fact that compliance is hampered by the fact that legal documents are often complex and that regulations are ever changing. This paper aims to describe the ways in which NLP aids in keeping GDPR compliance effortless through automated scanning for compliance, evaluating privacy policies, and increasing the level of transparency. The work does not only limit to exploring the application of NLP for dealing with the privacy policies and facilitate better understanding of the third-party data sharing but also proceed to perform the preliminary studies to evaluate the difference of several NLP models. They implement and execute the models to distinguish the one that performs the best based on the efficiency and speed at which it automates the process of compliance verification and analyzing the privacy policy. Moreover, some of the topics discussed in the research deal with the possibility of using automatic tools and data analysis to GDPR, for instance, generation of the machine readable models that assist in evaluation of compliance. Among the evaluated models from our studies, SBERT performed best at the policy level with an accuracy of 0.57, precision of 0.78, recall of 0.83, and F1-score of 0.80. BERT showed the highest performance at the sentence level, achieving an accuracy of 0.63, precision of 0.70, recall of 0.50, and F1-score of 0.55. Therefore, this paper emphasizes the importance of NLP to help organizations overcome the difficulties of GDPR compliance, create a roadmap to a more client-oriented data protection regime. In this regard, by comparing preliminary studies done in the test and showing the performance of the better model, it helps enhance the measures taken in compliance and fosters the defense of individual rights in the cyberspace.
-
Enhancing DevSecOps with continuous security requirements analysis and testing
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1687-1702The fast-paced environment of DevSecOps requires integrating security at every stage of software development to ensure secure, compliant applications. Traditional methods of security testing, often performed late in the development cycle, are insufficient to address the unique challenges of continuous integration and continuous deployment (CI/CD) pipelines, particularly in complex, high-stakes sectors such as industrial automation. In this paper, we propose an approach that automates the analysis and testing of security requirements by embedding requirements verification into the CI/CD pipeline. Our method employs the ARQAN tool to map high-level security requirements to Security Technical Implementation Guides (STIGs) using semantic search, and RQCODE to formalize these requirements as code, providing testable and enforceable security guidelines.We implemented ARQAN and RQCODE within a CI/CD framework, integrating them with GitHub Actions for realtime security checks and automated compliance verification. Our approach supports established security standards like IEC 62443 and automates security assessment starting from the planning phase, enhancing the traceability and consistency of security practices throughout the pipeline. Evaluation of this approach in collaboration with an industrial automation company shows that it effectively covers critical security requirements, achieving automated compliance for 66.15% of STIG guidelines relevant to the Windows 10 platform. Feedback from industry practitioners further underscores its practicality, as 85% of security requirements mapped to concrete STIG recommendations, with 62% of these requirements having matching testable implementations in RQCODE. This evaluation highlights the approach’s potential to shift security validation earlier in the development process, contributing to a more resilient and secure DevSecOps lifecycle.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"