All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Calculation of transverse wave speed in preloaded fibres under an impact
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 887-897The paper considers the problem of transverse impact on a thin preloaded fiber. The commonly accepted theory of transverse impact on a thin fiber is based on the classical works of Rakhmatulin and Smith. The simple relations obtained from the Rakhmatulin – Smith theory are widely used in engineering practice. However, there are numerous evidences that experimental results may differ significantly from estimations based on these relations. A brief overview of the factors that cause the differences is given in this article.
This paper focuses on the shear wave velocity, as it is the only feature that can be directly observed and measured using high-speed cameras or similar methods. The influence of the fiber preload on the wave speed is considered. This factor is important, since it inevitably arises in the experimental results. The reliable fastening and precise positioning of the fiber during the experiments requires its preload. This work shows that the preload significantly affects the shear wave velocity in the impacted fiber.
Numerical calculations were performed for Kevlar 29 and Spectra 1000 yarns. Shear wave velocities are obtained for different levels of initial tension. A direct comparison of numerical results and analytical estimations with experimental data is presented. The speed of the transverse wave in free and preloaded fibers differed by a factor of two for the setup parameters considered. This fact demonstrates that measurements based on high-speed imaging and analysis of the observed shear waves should take into account the preload of the fibers.
This paper proposes a formula for a quick estimation of the shear wave velocity in preloaded fibers. The formula is obtained from the basic relations of the Rakhmatulin – Smith theory under the assumption of a large initial deformation of the fiber. The formula can give significantly better results than the classical approximation, this fact is demonstrated using the data for preloaded Kevlar 29 and Spectra 1000. The paper also shows that direct numerical calculation has better corresponding with the experimental data than any of the considered analytical estimations.
-
Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.
In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.
-
Dynamical characteristics of DNA kinks and antikinks
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 209-217Views (last year): 2. Citations: 7 (RSCI).In this article in the frameworks of the sine-Gordon mode we have calculated the dynamical characteristics of kinks and antikinks activated in the homogeneous polynucleotide chains each if them contains only one of the types of the bases: adenines, thymines, guanines or cytosines. We have obtained analytical formulas and constructed the graphs for the kink and antikink profiles and for their energy density in the 2D- and 3D-dimension. Mass of kinks and antikinks, their energy of rest and their size have been estimated. The trajectories of kink and antikink motion in the phase space have been calculated in the 2D- and 3D-dimension.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




