All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Denoising fluorescent imaging data with two-step truncated HOSVD
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.
-
Modelling of astrocyte morphology with space colonization algorithm
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 465-481We examine a phenomenological algorithm for generating morphology of astrocytes, a major class of glial brain cells, based on morphometric data of rat brain protoplasmic astrocytes and observations of general cell development trends in vivo, based on current literature. We adapted the Space Colonization Algorithm (SCA) for procedural generation of astrocytic morphology from scratch. Attractor points used in generation were spatially distributed in the model volume according to the synapse distribution density in the rat hippocampus tissue during the first week of postnatal brain development. We analyzed and compared astrocytic morphology reconstructions at different brain development stages using morphometry estimation techniques such as Sholl analysis, number of bifurcations, number of terminals, total tree length, and maximum branching order. Using morphometric data from protoplasmic astrocytes of rats at different ages, we selected the necessary generation parameters to obtain the most realistic three-dimensional cell morphology models. We demonstrate that our proposed algorithm allows not only to obtain individual cell geometry but also recreate the phenomenon of tiling domain organization in the cell populations. In our algorithm tiling emerges due to the cell competition for territory and the assignment of unique attractor points to their processes, which then become unavailable to other cells and their processes. We further extend the original algorithm by splitting morphology generation in two phases, thereby simulating astrocyte tree structure development during the first and third-fourth weeks of rat postnatal brain development: rapid space exploration at the first stage and extensive branching at the second stage. To this end, we introduce two attractor types to separate two different growth strategies in time. We hypothesize that the extended algorithm with dynamic attractor generation can explain the formation process of fine astrocyte cell structures and maturation of astrocytic arborizations.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




