Результаты поиска по 'automation':
Найдено статей: 41
  1. Shumov V.V., Korepanov V.O.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 217-242

    Simulation of combat and military operations is the most important scientific and practical task aimed at providing the command of quantitative bases for decision-making. The first models of combat were developed during the First World War (M. Osipov, F. Lanchester), and now they are widely used in connection with the massive introduction of automation tools. At the same time, the models of combat and war do not fully take into account the moral potentials of the parties to the conflict, which motivates and motivates the further development of models of battle and war. A probabilistic model of combat is considered, in which the parameter of combat superiority is determined through the parameter of moral (the ratio of the percentages of the losses sustained by the parties) and the parameter of technological superiority. To assess the latter, the following is taken into account: command experience (ability to organize coordinated actions), reconnaissance, fire and maneuverability capabilities of the parties and operational (combat) support capabilities. A game-based offensive-defense model has been developed, taking into account the actions of the first and second echelons (reserves) of the parties. The target function of the attackers in the model is the product of the probability of a breakthrough by the first echelon of one of the defense points by the probability of the second echelon of the counterattack repelling the reserve of the defenders. Solved the private task of managing the breakthrough of defense points and found the optimal distribution of combat units between the trains. The share of troops allocated by the parties to the second echelon (reserve) increases with an increase in the value of the aggregate combat superiority parameter of those advancing and decreases with an increase in the value of the combat superiority parameter when repelling a counterattack. When planning a battle (battles, operations) and the distribution of its troops between echelons, it is important to know not the exact number of enemy troops, but their capabilities and capabilities, as well as the degree of preparedness of the defense, which does not contradict the experience of warfare. Depending on the conditions of the situation, the goal of an offensive may be to defeat the enemy, quickly capture an important area in the depth of the enemy’s defense, minimize their losses, etc. For scaling the offensive-defense model for targets, the dependencies of the losses and the onset rate on the initial ratio of the combat potentials of the parties were found. The influence of social costs on the course and outcome of wars is taken into account. A theoretical explanation is given of a loss in a military company with a technologically weak adversary and with a goal of war that is unclear to society. To account for the influence of psychological operations and information wars on the moral potential of individuals, a model of social and information influence was used.

  2. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195

    Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.

  3. Salem N., Hudaib A., Al-Tarawneh K., Salem H., Tareef A., Salloum H., Mazzara M.
    A survey on the application of large language models in software engineering
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1715-1726

    Large Language Models (LLMs) are transforming software engineering by bridging the gap between natural language and programming languages. These models have revolutionized communication within development teams and the Software Development Life Cycle (SDLC) by enabling developers to interact with code using natural language, thereby improving workflow efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and bug detection, thus reducing manual effort and accelerating the development process. The integration of LLMs into the development process offers several advantages, including the automation of error correction, enhanced collaboration, and the ability to generate high-quality, functional code based on natural language input. Additionally, LLMs assist developers in understanding and implementing complex software requirements and design patterns. This paper also discusses the evolution of LLMs from simple code completion tools to sophisticated models capable of performing high-level software engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption, such as issues related to model accuracy, interpretability, and potential biases. These limitations must be addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes by identifying key areas for future research, including improving the adaptability of LLMs to specific software domains, enhancing their contextual understanding, and refining their capabilities to generate semantically accurate and efficient code. This survey provides valuable insights into the evolving role of LLMs in software engineering, offering a foundation for further exploration and practical implementation.

  4. Shaheen L., Rasheed B., Mazzara M.
    Tree species detection using hyperspectral and Lidar data: A novel self-supervised learning approach
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1747-1763

    Accurate tree identification is essential for ecological monitoring, biodiversity assessment, and forest management. Traditional manual survey methods are labor-intensive and ineffective over large areas. Advances in remote sensing technologies including lidar and hyperspectral imaging improve automated, exact detection in many fields.

    Nevertheless, these technologies typically require extensive labeled data and manual feature engineering, which restrict scalability. This research proposes a new method of Self-Supervised Learning (SSL) with the SimCLR framework to enhance the classification of tree species using unlabelled data. SSL model automatically discovers strong features by merging the spectral data from hyperspectral data with the structural data from LiDAR, eliminating the need for manual intervention.

    We evaluate the performance of the SSL model against traditional classifiers, including Random Forest (RF), Support Vector Machines (SVM), and Supervised Learning methods, using a dataset from the ECODSE competition, which comprises both labeled and unlabeled samples of tree species in Florida’s Ordway-Swisher Biological Station. The SSL method has been demonstrated to be significantly more effective than traditional methods, with a validation accuracy of 97.5% compared to 95.56% for Semi-SSL and 95.03% for CNN in Supervised Learning.

    Subsampling experiments showed that the SSL technique is still effective with less labeled data, with the model achieving good accuracy even with only 20% labeled data points. This conclusion demonstrates SSL’s practical applications in circumstances with insufficient labeled data, such as large-scale forest monitoring.

  5. Chuvilin K.V.
    The use of syntax trees in order to automate the correction of LaTeX documents
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 871-883

    The problem is to automate the correction of LaTeX documents. Each document is represented as a parse tree. The modified Zhang-Shasha algorithm is used to construct a mapping of tree vertices of the original document to the tree vertices of the edited document, which corresponds to the minimum editing distance. Vertex to vertex maps form the training set, which is used to generate rules for automatic correction. The statistics of the applicability to the edited documents is collected for each rule. It is used for quality assessment and improvement of the rules.

    Citations: 5 (RSCI).
  6. Vassilevski Y.V., Simakov S.S., Gamilov T.M., Salamatova V.Yu., Dobroserdova T.K., Kopytov G.V., Bogdanov O.N., Danilov A.A., Dergachev M.A., Dobrovolskii D.D., Kosukhin O.N., Larina E.V., Meleshkina A.V., Mychka E.Yu., Kharin V.Yu., Chesnokova K.V., Shipilov A.A.
    Personalization of mathematical models in cardiology: obstacles and perspectives
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930

    Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.

    Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.

    The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.

  7. Vetrin R.L., Koberg K.
    Reinforcement learning in optimisation of financial market trading strategy parameters
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1793-1812

    High frequency algorithmic trading became is a subclass of trading which is focused on gaining basis-point like profitability on sub-second time frames. Such trading strategies do not depend on most of the factors eligible for the longer-term trading and require specific approach. There were many attempts to utilize machine learning techniques to both high and low frequency trading. However, it is still having limited application in the real world trading due to high exposure to overfitting, requirements for rapid adaptation to new market regimes and overall instability of the results. We conducted a comprehensive research on combination of known quantitative theory and reinforcement learning methods in order derive more effective and robust approach at construction of automated trading system in an attempt to create a support for a known algorithmic trading techniques. Using classical price behavior theories as well as modern application cases in sub-millisecond trading, we utilized the Reinforcement Learning models in order to improve quality of the algorithms. As a result, we derived a robust model which utilize Deep Reinforcement learning in order to optimise static market making trading algorithms’ parameters capable of online learning on live data. More specifically, we explored the system in the derivatives cryptocurrency market which mostly not dependent on external factors in short terms. Our research was implemented in high-frequency environment and the final models showed capability to operate within accepted high-frequency trading time-frames. We compared various combinations of Deep Reinforcement Learning approaches and the classic algorithms and evaluated robustness and effectiveness of improvements for each combination.

  8. Smirnov S.A., Tarasov A.S.
    An automated system for program parameters fine tuning in the cloud
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 587-592

    The paper presents a software system aimed at finding best (in some sense) parameters of an algorithm. The system handles both discrete and continuous parameters and employs massive parallelism offered by public clouds. The paper presents an overview of the system, a method to measure algorithm's performance in the cloud and numerical results of system's use on several problem sets.

  9. Sukhoroslov O.V., Rubtsov A.O., Volkov S.Yu.
    Development of distributed computing applications and services with Everest cloud platform
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 593-599

    The use of service-oriented approach in scientific domains can increase research productivity by enabling sharing, publication and reuse of computing applications, as well as automation of scientific workflows. Everest is a cloud platform that enables researchers with minimal skills to publish and use scientific applications as services. In contrast to existing solutions, Everest executes applications on external resources attached by users, implements flexible binding of resources to applications and supports programmatic access to the platform's functionality. The paper presents current state of the platform, recent developments and remaining challenges.

    Views (last year): 6. Citations: 2 (RSCI).
  10. Dobrynin V.N., Filozova I.A.
    Cataloging technology of information fund
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 661-673

    The article discusses the approach to the improvement of information processing technology on the basis of logical-semantic network (LSN) Question–Answer–Reaction aimed at formation and support of the catalog service providing efficient search of answers to questions.

    The basis of such a catalog service are semantic links, reflecting the logic of presentation of the author's thoughts within the framework this publication, theme, subject area. Structuring and support of these links will allow working with a field of meanings, providing new opportunities for the study the corps of digital libraries documents. Cataloging of the information fund includes: formation of lexical dictionary; formation of the classification tree for several bases; information fund classification for question–answer topics; formation of the search queries that are adequate classification trees the question–answer; automated search queries on thematic search engines; analysis of the responses to queries; LSN catalog support during the operational phase (updating and refinement of the catalog). The technology is considered for two situations: 1) information fund has already been formed; 2) information fund is missing, you must create it.

    Views (last year): 3.
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"