Результаты поиска по 'behavioral model':
Найдено статей: 107
  1. Fedorov V.A., Kholina E.G., Kovalenko I.B.
    Molecular dynamics of tubulin protofilaments and the effect of taxol on their bending deformation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 503-512

    Despite the widespread use of cancer chemotherapy drugs, the molecular mechanisms of action of many of them remain unclear. Some of these drugs, such as taxol, are known to affect the dynamics of microtubule assembly and stop the process of cell division in prophase-prometaphase. Recently, new spatial structures of microtubules and individual tubulin oligomers have emerged associated with various regulatory proteins and cancer chemotherapy drugs. However, knowledge of the spatial structure in itself does not provide information about the mechanism of action of drugs.

    In this work, we applied the molecular dynamics method to study the behavior of taxol-bound tubulin oligomers and used our previously developed method for analyzing the conformation of tubulin protofilaments, based on the calculation of modified Euler angles. Recent structures of microtubule fragments have demonstrated that tubulin protofilaments bend not in the radial direction, as many researchers assume, but at an angle of approximately 45◦ from the radial direction. However, in the presence of taxol, the bending direction shifts closer to the radial direction. There was no significant difference between the mean bending and torsion angles of the studied tubulin structures when bound to the various natural regulatory ligands, guanosine triphosphate and guanosine diphosphate. The intra-dimer bending angle was found to be greater than the interdimer bending angle in all analyzed trajectories. This indicates that the bulk of the deformation energy is stored within the dimeric tubulin subunits and not between them. Analysis of the structures of the latest generation of tubulins indicated that the presence of taxol in the tubulin beta subunit pocket allosterically reduces the torsional rigidity of the tubulin oligomer, which could explain the underlying mechanism of taxol’s effect on microtubule dynamics. Indeed, a decrease in torsional rigidity makes it possible to maintain lateral connections between protofilaments, and therefore should lead to the stabilization of microtubules, which is what is observed in experiments. The results of the work shed light on the phenomenon of dynamic instability of microtubules and allow to come closer to understanding the molecular mechanisms of cell division.

  2. Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

  3. Zhmurov A.A., Alekseenko A.E., Barsegov V.A., Kononova O.G., Kholodov Y.A.
    Phase transition from α-helices to β-sheets in supercoils of fibrillar proteins
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 705-725

    The transition from α-helices to β-strands under external mechanical force in fibrin molecule containing coiled-coils is studied and free energy landscape is resolved. The detailed theoretical modeling of each stage of coiled-coils fragment pulling process was performed. The plots of force (F) as a function of molecule expansion (X) for two symmetrical fibrin coiled-coils (each ∼17 nm in length) show three distinct modes of mechanical behaviour: (1) linear (elastic) mode when coiled-coils behave like entropic springs (F<100−125 pN and X<7−8 nm), (2) viscous (plastic) mode when molecule resistance force does not increase with increase in elongation length (F≈150 pN and X≈10−35 nm) and (3) nonlinear mode (F>175−200 pN and X>40−50 nm). In linear mode the coiled-coils unwind at 2π radian angle, but no structural transition occurs. Viscous mode is characterized by the phase transition from the triple α-spirals to three-stranded parallel β-sheet. The critical tension of α-helices is 0.25 nm per turn, and the characteristic energy change is equal to 4.9 kcal/mol. Changes in internal energy Δu, entropy Δs and force capacity cf per one helical turn for phase transition were also computed. The observed dynamic behavior of α-helices and phase transition from α-helices to β-sheets under tension might represent a universal mechanism of regulation of fibrillar protein structures subject to mechanical stresses due to biological forces.

    Views (last year): 6. Citations: 1 (RSCI).
  4. Timiryanova V.M., Lakman I.A., Larkin M.M.
    Retail forecasting on high-frequency depersonalized data
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734

    Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.

  5. Vetrin R.L., Koberg K.
    Reinforcement learning in optimisation of financial market trading strategy parameters
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1793-1812

    High frequency algorithmic trading became is a subclass of trading which is focused on gaining basis-point like profitability on sub-second time frames. Such trading strategies do not depend on most of the factors eligible for the longer-term trading and require specific approach. There were many attempts to utilize machine learning techniques to both high and low frequency trading. However, it is still having limited application in the real world trading due to high exposure to overfitting, requirements for rapid adaptation to new market regimes and overall instability of the results. We conducted a comprehensive research on combination of known quantitative theory and reinforcement learning methods in order derive more effective and robust approach at construction of automated trading system in an attempt to create a support for a known algorithmic trading techniques. Using classical price behavior theories as well as modern application cases in sub-millisecond trading, we utilized the Reinforcement Learning models in order to improve quality of the algorithms. As a result, we derived a robust model which utilize Deep Reinforcement learning in order to optimise static market making trading algorithms’ parameters capable of online learning on live data. More specifically, we explored the system in the derivatives cryptocurrency market which mostly not dependent on external factors in short terms. Our research was implemented in high-frequency environment and the final models showed capability to operate within accepted high-frequency trading time-frames. We compared various combinations of Deep Reinforcement Learning approaches and the classic algorithms and evaluated robustness and effectiveness of improvements for each combination.

  6. Shatrov A.V., Okhapkin V.P.
    Optimal control of bank investment as a factorof economic stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967

    This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.

    Views (last year): 5.
  7. Bogdanov A.V., Mareev V.V., Stepanov E.A., Panchenko M.V.
    Modeling of behavior of the option. The formulation of the problem
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 759-766

    Object of research: The creation of algorithm for mass computations of options‘ price for formation of a riskless portfolio. The method is based on the generalization of the Black–Scholes method. The task is the modeling of behavior of all options and tools for their insurance. This task is characterized by large volume of realtime complex computations that should be executed concurrently The problem of the research: depending on conditions approaches to the solution should be various. There are three methods which can be used with different conditions: the finite difference method, the path-integral approach and methods which work in conditions of trade stop. Distributed computating in these three cases is organized differently and it is necessary to involve various approaches. In addition to complexity the mathematical formulation of the problem in literature is not quite correct. There is no complete description of boundary and initial conditions and also several hypotheses of the model do not correspond to real market. It is necessary to give mathematically correct formulation of the task, and to neutralize a difference between hypotheses of the model and their prototypes in the market. For this purpose it is necessary to expand standard formulation by additional methods and develop methods of realization for each of solution branches.

    Views (last year): 2. Citations: 1 (RSCI).
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"