Результаты поиска по 'bifurcations':
Найдено статей: 47
  1. Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  2. Ilyin O.V.
    Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882

    We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.

  3. Ansori Moch.F., Al Jasir H., Sihombing A.H., Putra S.M., Nurfaizah D.A., Nurulita E.
    Assessing the impact of deposit benchmark interest rate on banking loan dynamics
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 1023-1032

    Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.

  4. Bratsun D.A., Kostarev K.V.
    Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028

    Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.

  5. Zevika M.Z., Triska A.T., Puspita J.W.
    The dynamics of monkeypox transmission with an optimal vaccination strategy through a mathematical modelling approach
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1635-1651

    Monkeypox is a disease reemerging in 2022 which is caused by the monkeypox virus (MPV). This disease can be transmitted not only from rodents to humans, but also from humans to other humans, and even from the environment to humans. In this work, we propose a mathematical model to capture the dynamics of monkeypox transmission which involve three modes of transmission, namely, from rodents to rodents, rodents to humans, and from humans to other humans. In addition to the basic reproduction number, we investigate the stability of all equilibrium points analytically, including an implicit endemic equilibrium by applying the center manifold theorem. Moreover, the vaccination as an alternative solution to eradicate the monkeypox transmission is discussed and solved as an optimal control problem. The results of this study show that the transmission of monkeypox is directly affected by the internal infection rates of each population, i. e., the infection rate of the susceptible human by an infected human and the infection rate of the susceptible rodent by an infected rodent. Furthermore, the external infection rates, i. e., the infection rate of the susceptible human by an infected rodent also affects the transmission of monkeypox although it does not affect the basic reproduction number directly.

  6. Zhdanova O.L., Neverova G.P., Frisman E.Y.
    Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554

    We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.

    The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.

  7. Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"